Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спирты поляризация связи в гидроксильной

    Каждая из приведенных резонансных структур демонстрирует возможное крайнее смещение электронной плотности в бензольное кольцо. Все в совокупности они передают характер взаимодействия гидроксильной группы с бензольным ядром. Важным при этом оказывается еще более сильная, чем в спиртах, поляризация связи Оч-Н и как следствие этого — резкое усиление кислотных свойств фенолов, которые в отличие от спиртов взаимодействуют со щелочами  [c.152]


    Водородные связи в карбоновых кислотах прочнее, чем в спиртах, поэтому летучесть кислот существенно ниже. Это связано с большей степенью поляризации связей, а также возможностью образования эффективных водородных связей как карбонильной, так и гидроксильной группой карбоксила. Так, уксусный альдегид с молекулярной массой 44 кипит прл 21 °С, этанол с массой 46 - при 79 °С, а уксусная кисло га с массой 60 кипит уже при ] 18 °С. [c.99]

    Реакции гидроксильного водорода. Образование алкоголятов Спирты — практически нейтральные вещества. Однако атом водо рода гидроксильной группы, обладая некоторой подвижностью, спо собен вступать в реакции замещения. Такая подвижность зависит в первую очередь, от взаимного влияния атомов кислорода и водо рода в молекуле спирта. Атом кислорода как более электроотрица тельный элемент, оттягивая электронную плотность от водород ного атома, способствует поляризации связи О—Н  [c.107]

    В спиртах предельные радикалы, обладая электронодонорными свойствами, ослабляют степень поляризации связи в гидроксильной группе. Поэтому спирты являются нейтральными, в общепринятом понимании, веществами. Их константа диссоциации меньше, чем 10 . [c.170]

    Химические свойства. Являясь производными углеводородов, С1шрты обладают всеми их химическими свойствами. Вместе с тем наличие гидроксильной группы определяет индипидуальные химические свойства спиртов. Наличие в молекуле спирта атома кислорода, обладающего более высокой электроотрицательностью, чем атомы углерода и водорода, приводит к показанной на структурной формуле этилового спирта поляризации связей  [c.149]

    Значения 0° С—О) для первичных, вторичных и третичных алканолов очень близки (380—385 кДж-моль- ) и значительно превыщают эти значения для спиртов, дающих мезомерные радикалы (например, для аллилового спирта — 330 кДж-моль" , для трифенилкарбинола— 280 кДж-моль ). Прямое расщепление таких относительно слабых связей С—О обычно протекает достаточно легко (например, дезоксигенирование, см. с. 76). В то же время замещение гидроксильной группы при нуклеофильной атаке по а-атому углерода обычно требует превращения ее в лучшую уходящую группу. Такая активация, включающая ослабление и дальнейшую поляризацию связи С—О, может достигаться. путем соответствующего протонирования (применяется в случае, если атакующий нуклеофил является слабым основанием). Гораздо чаще используются классические производные типа (84) [дополняющие (83), которые используются при активации спиртов как нуклеофилов], что позволяет проводить множество реакций замещения, подобно тому как это имеет место в случае алкилгалогенидов (см. гл. 3.3). Подробнее концепция активации будет разобрана ниже, главным образом на примерах реакционных интермедиатов, а не продуктов реакции. Разнообразное синтетическое применение продемонстрировано для многих интермедиатов, таких как соли алкоксифосфония (85), соли-2-алкокси-Н-метилпиридиния (86) и соли 2-алкокси-Ы-этилбензотиазолия (87). Гетероциклические промежуточные соединения, использованные группой Мукаямы [123], легко получаются из соответ- [c.61]


    Поляризация связи в гидроксильной группе спиртов и фенолов. Углеводородные радикалы, соединенные с гидроксильной группой, влияют на поляризацию связи между атомами кислорода и водорода. Поскольку атом кислорода обладает большим сродством к электрону, плотность электронного облака этой свяэи смещена к атому кислорода, в результате чего связь поляризована [c.170]

    Большая подвижность водорода в гидроксильных группах гликолей (и вообще многоатомных спиртов) в сравнении с одноатомными спиртами объясняется соседством (или близостью) электроотрицательных атомов кислорода других гидроксильных групп, способностью этих атомов притягивать электроны. Под их влиянием увеличивается поляризация связей О—Н, т. е. смещение пары электронов от водорода к кислороду и возрастает склонность водорода замещаться металлом. Однако устойчивость гликолятов тяжелых металлов обусловлена не только этим. Они имеют характер внутрикомплексных соединений. Например, состав и строение гликолята меди (И) сложнее, чем представлено приведенной выше формулой. Он содержит комплекс из двух молекул гликоля на один атом меди  [c.133]

    Кислородный обмен. Известно, что кислород гидроксильных групп спиртов не обменивается с кислородом воды. Исключение представляет трианизилкар-бинол, обменивающий гидроксильный кислород лишь в присутствии серной кислоты при 95° [ ]. В этом соединении метоксильные группы, отталкивая электроны, способствуют проявлению основных свойств и ионизации гидроксила. Соединения кремния проявляют тенденцию к реакциям нуклеофильного замещения, являющуюся следствием электроположительного характера кремния. Мы предположили, что эта тенденция в силанолах может привести к кислородному обмену. Обмен путем нуклеофильного замещения обычно идет через промежуточный комплекс, образующийся при взаимодействии гидроксила или воды с положительным углеродом или иным центральным атомом. В спиртах, в противоположность карбонильным и карбоксильным соединениям, положительный характер углерода выражен слабо, что объясняет затрудненность кислородного обмена в гидроксиле. В силанолах положительный характер кремния, являющийся следствием значительной поляризации 81—ОН-связи, выражен достаточно сильно для возможности обмена путем нуклеофильного замещения. [c.1534]


Смотреть страницы где упоминается термин Спирты поляризация связи в гидроксильной: [c.99]    [c.25]    [c.31]    [c.15]   
Органическая химия (1956) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Поляризация связей



© 2025 chem21.info Реклама на сайте