Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Множества продуктов реакции

    Среди множества путей, по которым может развиваться элементарный акт, существует один, связанный с преодолением самого низкого барьера. Этому барьеру соответствует определенное взаимное расположение атомов, которое называется переходным состоянием или активированным комплексом. Активированному комплексу соответствует определенная энергия, а также определенная нулевая энергия колебаний, присущих активированному комплексу. Если полная энергия системы атомов ниже, чем нулевая энергия активированного комплекса, то такая система атомов не может превратиться в активированный комплекс, т. е. не может преодолеть энергетический барьер и превратиться в продукты реакции .  [c.348]


    Продукты окисления. Неполное окисление углеводородов и углеводородных смесей всегда было исключительно интересным объектом исследования. Сложность этой проблемы объясняется двумя причинами во-первых, сама реакция окисления является трудноуправляемой и, во-вторых, — реакционная смесь содержит бесчисленное множество соединений самых различных классов. Из всех процессов неполного окисления углеводородов наиболее хорошо изученным и освоенным является получение синтез-газа (смеси СО п водорода) для производства метанола и для оксосинтеза [300]. Сырьем для этого процесса служит метан (природный газ) в смеси с 95 %-ным кислородом. Очистка продукта реакции от СО позволяет также получать водород (в смеси с азотом) для синтеза аммиака (301—305]. [c.584]

    В процессах 1-й группы токсичные вещества могут участвовать в качестве исходных, конечных, промежуточных и побочных продуктов. Это значит, что токсичными веществами могут являться исходные и конечные продукты реакции, они могут получаться по ходу основной реакции, которая идет в несколько стадий, и, наконец, могут получаться в результате прохождения побочных реакций. В последнем случае имеют место два варианта побочные реакции или всегда сопутствуют основной или же возникают только при отклонениях от нормального режима работы, т. е. при возникновении аварийной ситуации. Например, в процессах нитрования основным нитрующим агентом является азотная кислота, пары которой обладают токсическим действием. В то же время нитрующие агенты одновременно являются сильными окислителями. Эта двойственная природа нитрующих агентов делает возможным возникновение множества побочных реакций при нарушениях нормального режима. Одним из продуктов побочных реакций являются окислы азота, обладающие сильными токсическими свойствами. [c.13]

    Из вышеизложенного следует, что при термолизе нефтяного сырья протекает множество консекутивных реакций и получаются продукты чрезвычайно сложного состава. Исследовать ход превра — щений и конечную судьбу каждого компонента смеси не представляется возможным. Несмотря на это, зная средний состав сырья, можно приблизительно прогнозировать групповой (не индивидуальный) состав конечных продуктов термолиза. [c.35]

    Химик-органик очень хорошо представляет сложность, которую вносят параллельные реакции, так как множество органических реакций включает параллельные стадии, обычно дающие нежелательные продукты. [c.37]

    Нетрудно привести множество примеров реакций, состояние равновесия которых указывает на возможность получения в определенных условиях почти полного превращения исходных веществ в продукты, но практически исходные вещества могут не прореагировать даже после продолжительного периода проведения процесса. [c.204]


    Для химического превращения значительных масс вещества, т. е. множества молекул, являются необходимыми столкновение молекул и обмен энергиями между ними (перенос энергии движения молекул продуктов реакции к молекулам исходных веществ путем столкновений). Таким образом реальный химический процесс тесно связан и со второй физической формой движения — хаотическим движением молекул макроскопических тел, которое часто называют тепловым движением. [c.18]

    ЭТО часто делается ири исследовании реакций электрофильного замещения. Однако для свободнорадикальных реакций замещения точность этого метода очень низка из-за множества побочных реакций. Например, орто-положение может быть более реакционноспособным, чем лара-положение, но при этом интермедиат, образующийся при атаке иара-иоложения, переходит в продукт, а интермедиат, образующийся при атаке орго-поло-жения, вступает в побочную реакцию. Тогда анализ относительного содержания трех продуктов не дает истинного представления о том, какое положение более восприимчиво к атаке. Тем не менее можно сделать некоторые обобщения, хотя трактовка их весьма противоречива [55]  [c.67]

    Одним из наиболее важных положений химической теории является положение о разделении веществ на два класса —на элементарные (простые) вещества и соединения. Такая классификация была предложена в 1787 г. французским химиком Антуаном Лораном Лавуазье (1743—1794) на основании выполненных им за предшествующие 15 лет количественных исследований множества веществ (реагентов и продуктов реакций), участвующих в химических процессах. Лавуазье определял соединение как вещество, которое можно разложить на два или несколько других веществ, а элементарное вещество (или элемент)— как вещество, которое нельзя разложить. В своем Элементарном курсе химии , опубликованном в 1789 г., Лавуазье перечислил 33 элемента и среди них 10 еще не выделенных в виде простых веществ (но уже известных по своим окислам, сложную природу которых он предугадал точно). После открытия электрона и атомного ядра определения элементарных веществ и соединений были пересмотрены этому вопросу посвящены последующие разделы данной главы. [c.77]

    С тех пор на рынке материалов для буровых растворов появилось множество продуктов, выполняющих различные функции. Своим появлением эти продукты обязаны способности лигнита вступать в химические реакции, причем в больщинстве случаев исходным сырьем послужил отработанный сульфитный щелок. Наиболее ценными производными лигнита являются хромлигносульфонаты, которые были внедрены в 1955 г. (см. главу 2). Детальное описание получения лигносульфонатов хрома, железа и меди приведено в двух основополагающих патентах. В них дано описание различных модификаций, полученных путем окисления и образования солей металлов и направленных на повыщение эффективности действия компонентов отработанного сульфитного щелока при обработке буровых растворов. На рис. 11.15 показаны различные направления, в которых могут производиться эти модификации. [c.489]

    ГИИ лежит расширенное воспроизводство микробных клеток и получение продуктов метаболизма (превращения поступающих в клетку веществ в конечные продукты). Скорость биохимического превращения определяется биохимическими процессами в клетке и развитием их популяции. Протекает множество ферментативных реакций, изученных еще не в полном объеме, тем не менее, в основные фуппы клеточных процессов можно объединить превращения, определяющие рост и размножение (отпочкование) клеток, утилизацию субстрата (питательной среды для них), образование продуктов метаболизма. Для объяснения структуры кинетического уравнения приведем его пример. [c.81]

    Протекание химических процессов термической деструкции органических соединений ТГИ подчиняется известным законам химической термодинамики и кинетики. Тем не менее в этом случае протекает одновременно множество различных реакций (последовательных и параллельных), выделить из которых какую-либо одну чрезвычайно трудно. Можно исследовать процесс деструкции по одному из продуктов, но чаще всего его изучают по динамике образования, например, летучих продуктов. В этом случае говорят о брутто-реакциях. [c.130]

    Конечно, в столь сложных смесях под действием активирующего излучения протекает множество ядерных реакций, продукты которых могут сильно мешать определению искомого элемента. По способу преодоления этих помех различают три варианта метода активационного анализа инструментальный, с предварительным выделением одного или группы определяемых элементов перед облучением и радиохимический. [c.154]

    В ряде случаев замечено, что если соединение неустойчиво и разлагается, пусть с небольшой скоростью, то кристаллы растут медленно, со множеством дефектов. Мы связываем это с высокой химической активностью промежуточных продуктов реакции именно в момент прохождения реакции разложения, т. е пока эти [c.53]

    В химической и смежных областях промышленности применяют всевозможные типы реакторов, имеющие существенные различия. Тем не менее установлены признаки, по которым все множество реакторов можно классифицировать. В качестве таких признаков (критериев) наиболее часто принимаются фазовое состояние реагентов, характер операций питания реагентами и удаления продуктов реакции, режим движения реакционной среды, тепловой режим, конструктивные особенности. [c.142]


    При термических превращениях нефтяных остатков протекает одновременно множество химических реакций, в которых участвует огромное число индивидуальных компонентов, причем детальный состав сырья и продутстов не может быть определен. Эта ситуация требует поиска неординарных подходов. В данной работе нами предлагается использовать при разработке модели процессов, происходяпдах при термическом крекинге, коксовании и др., характерный показатель — коксуемость по Конрадсону. Если условно принять, что сырье, промежуточные и конечные продукты состоят как бы из двух компонентов - твердого компонента, массовая доля которого в смеси численно равна их коксуемости (С,), и жидкого компонента, массовая доля которого равна (1 — С,), то появляется возможность математического описания брутго-процесса термического превращения сырья. [c.42]

    Процесс образования продуктов уплотнения на катализаторах не может быть предста влен как одна химическая реакция, проявляющаяся в разных условиях, он протекает как множество разных реакций поликонденсации, состоящих из цикла элементарных стадий и разных процессов надмолекулярного структурирования продуктов уплотнения. [c.327]

    В. Метод потока. Изучение сложных кинетических систем затрудняется множеством вторичных реакций, сопровождающих первоначальный процесс. Значение этих реакций часто можно свести до пренебрежимой величины, если ограничить кинетическое изучение начальными периодами развития реакции. В статических системах это может быть достигнуто путем использования метода отбора проб. Весьма простой способ, который в основном и применяется, заключается в пропускании реагентов через зону реакции в течение определенных не слишком больших периодов времени (малых временах контакта). Этот метод допускает накопление значительных количеств продуктов (значительных в абсолютном, но не относительном смысле, так как они малы по сравнению с количеством использованпых реагентов) без значительного проявления вторичных реакций. Данный прием обеспечивает также удобное изучение реакции при таких условиях, когда концентрация реагентов сохраняется постоянной. [c.61]

    Итак, если молейула имеет N атомов, то размерность соответствующей и-матрицы N X N. На главной диагонали записываются неподеленные пары электронов всех последовательно расположенных N атомов молекулы, а недиагональные элементы определяют характер связи (одинарная, двойная, тройная и т. п.) между соответствующими атомами. Определим теперь для каждой элементарной реакции ансамбль молекулы (АМ) как совокупность молекул — исходных реактантов или совокупность молекул — конечных продуктов реакции. Нетрудно видеть, что математическое представление АМ есть блочно-диагональная i e-мaтpицa, составленная из 2 -матриц, которые находятся на главной диагонали. Совокупность всех возможных АМ образует семейство изомерных АМ (СИАМ), которое характеризует химические превращения реактантов. Конечно, множество всех АМ из СИАМ может быть однозначно представлено совокупностью Р = В ,. . ., В -Ве-матриц. Причем каждая Де-матрица содержит всю информацию о химической структуре молекул, составляющих заданный АМ, т. е. всю информацию о распределении связей и об определенных аспектах распределения валентных электронов. Поэтому каждая химическая реакция будет представлять собой не что иное, как взаимопревращение АМ вследствие перераспределения электронов между атомными остовами. [c.174]

    Молекулярность реакции. Наблюдаемая на опыте скорость химической реакции является совокупностью множества протекающих за единицу времени элементарных химических актов. Элементарным химическим актом называется единичный акт взаимодействия частиц (молекул, радикалов, ионов, атомов и др.), в результате которого образуются новые частицы продуктов реакции или промежуточных соединений. Число молекул, участвующих в элементарном химическом акте, называется молекулярностью реакции. Молекулярность реакции всегда целое положительное число 1, 2, реже 3. Элементарных химических актов с одновременным участием четырех молекул не бывает, так как вероятность одновременного столкнове- [c.527]

    Миграция атома галогена из азотсодержащей боковой цепи в ароматическое кольцо при обработке НС1 называется перегруппировкой Ортона [368]. В основном образуется параизомер, а также некоторое количество орго-замещенного продукта. Реакция проводилась с N-хлоро- и N-бромоаминами и реже — с N-иодопроизводными. Амин должен быть ацилирован-ным, кроме случая PhN b, когда получается 2,4-дихлоранилин. Растворителем обычно служит вода или уксусная кислота. Имеется множество указаний (кросс-галогенирование, результаты экспериментов с мечеными соединениями и т. д.) на то, что данный процесс носит межмолекулярный характер [369]. Вначале НС1 взаимодействует с исходным соединением, давая ArNH O Ha и СЬ, затем хлор галогенирует кольцо по реакции 11-12. Одним из доказательств такого пути реакции служит выделение хлора из реакционной смеси. Перегруппировку Ортона можно проводить и фотохимически [370], а также при нагревании в присутствии бензоилпероксида [371]. Все это свободнорадикальные процессы. [c.379]

    Конечно, эти три механизма нелегко различить всем им соответствует кинетика второго порядка, и два из них осуществляются с сохранением конфигурации [5]. Несмотря на множество работ, посвященных этой проблеме, известно лишь несколько случаев, когда можно однозначно сказать, что действительно имеет место какой-то один из трех механизмов, а не другой. Ясно, что отличить механизм 8е2 (с тыла) от механизмов 5е2 (с фронта) или 5е1 можно с помощью изучения стереохимии, и таких исследований известно довольно много. Подавляющее большинство реакций электрофильного замещения второго порядка происходят с сохранением конфигурации или характеризуются другими указаниями на фронтальную атаку, т. е. на механизмы 8е2 (с фронта) или 5е1. Например, при обработке цис-формы соединения 1 меченым хлоридом ртути(П) продукт 2 на 100 % представляет собой 1 ис-изомер. Поскольку в обоих продуктах реакции содержание меченого атома ртути приблизительно одинаково, это означает, что должна разрываться связь между ртутью и циклом (а такл<е другая связь Нд—С) [6]. Еще одним указанием иа фронтальную атаку явля- [c.409]

    Кетенимины (которые можно получить по методу Мейера, реакция 10-100) реагируют с алкиллитиевыми реагентами [177], давая литиоенамины (20), которые можно гидролизовать до кетонов 21 или обработать алкилгалогенидом и получить продукт реакции Сторка 22. Последний при гидролизе дает а-алкилиро-ванные кетоны 23. Очевидно, что множество кетонов типа 21 и 23 можно синтезировать, исходя из дигидро-1,3-оксазинов (реакция 10-100). [c.444]

    В предыдущей главе описаны кинетические законы, которым следуют химические реакции, причем весь процесс рассматривался только на молекулярном уровне. В то же время в реальных условиях эволюция химических систем привела к последовательному образованию множества сложных динамических структур, подготовивщих переход химической эволюции в биологическую. Поэтому проблема возникновения микро- и макроорганизаций в неравновесной системе, получающей от внешней среды вещества и энергию (например, развивающейся в изотермических условиях), исключительно важна. Возможно ли возникновение упорядоченности— временной и пространственной — в исходно однородной системе, в которой протекают химические реакции Трудность решения этой задачи обусловлена тем, что нет столь надежного признака устойчивости неравновесных систем, какими для равновесных является экстремум соответствующего термодинамического потенциала. Поэтому приходится прибегать к изучению кинетики процессов и в ней искать условия возникновения упорядоченности. В наиболее общей форме эта задача решена Тьюрингом (1952), показавшим, что в результате развития химической реакции при постоянной температуре и диффузионном перемешивании концентрации промежуточных продуктов реакции могут распределяться в пространстве неравномерно, образуя зоны различной концентрации. [c.325]

    Множество химических реакций осуществляется при постоянном давлении, как правило, при атмосферном давлении. Теплотой реакции при постоянном давлении Qp при температуре Т называется тепловая энергия, которая выделяется или поглощается в ходе реакции при постоянном давлении реагенты и продукты реакции приводятся в стехиометрических количествах при температуре Т нача-ньного состояния. [c.169]

    Бакибол 59 проявляет высокую реакционную способность по отношению к множеству разнообразных реагентов, однако во многих случаях анализ путей реакций сильно осложняется полифункциональностью субстрата и потому образованием смесей первичных продуктов и/или существованием вторичных реакций. Так, было показано, что 59 является активньм 2п-ком-понентом реакции Дильса-Альдера с обычными диенами типа циклопентадиена, фурана или антрацена, но нестабильность аддуктов препятствует строгому установлению их структуры. Последнее в конце концов удалось выполнить для продукта реакции с диеном 71 (схема 4,22), поскольку в этом случае первичный аддукт Дильса-Альдера легко претерпевает отщепление СО, приводящее к стабилизированному ароматическому производному 72 [15gj. Взаимодействие 59 с достаточно изощренным диеном 73 также дает стабильный аддукт (74) [15h). Эффективное образование продуктов 72 и 74 открывает пути к получению разнообразных других функционализированных производных, содержащих фуллереновый фрагмент. [c.403]

    Поскольку при переходе в возбужденные состояния (синглетные и триплетные) энергия молекул повышается, последние приобретают химические свойства, которых не было у невозбужденных молекул [67, 67а]. Изменения значений рА а функциональных групп при переходе в возбужденное состояние могут приводить к диссоциации протонов или к их присоединению. Диссоциация на ионы или радикалы иногда сопровождается разрывом связей. Могут протекать реакции фотоприсоединения и фотоотш,епления, а также изомеризация молекул, играюш,ая важную роль в функционировании зрительных рецепторов. Возбужденные молекулы могут стать сильными окислительными агентами, способными принимать атомы водорода или электроны от других молекул. Примером такого рода служит фотоокисление ЭДТА рибофлавином (подвергающимся фотовосстановлению, как показано на рис. 8-15). Более важным с точки зрения биологии процессом является фотосинтез, в ходе которого возбужденные молекулы хлорофилла осуществляют фотовосстановление других молекул, временно оказываясь при этом в окисленном состоянии. К сожалению, ценность исследования фотохимических реакций сильно снижается возможностью протекания множества параллельных реакций, зачастую приводящих к образованию огромного количества разных фотохимических продуктов (достаточно взглянуть на тонкослойную хроматограмму продуктов распада рибофлавина, рис. 2-34). [c.33]

    Фенольные и карбоксильные группы в гуминовой кислоте, входящей в состав лигнита, способны вступать в реакции и позволяют получать множество производных. Например, могут быть получены водорастворимый сульфометилированный лигнит и сульфонаты лигнита, являющиеся по действию аналогами производных квебрахо. Продукт реакции сульфированного лигнита и соли железа, хрома, марганца или цинка обеспечивает стабильность свойств бурового раствора в течение 16 ч при температуре-150 °С. Композиция, состоящая из сульфированного лигнита и водорастворимого сульфометилированного фенола, обеспечивает удовлетворительную термостабильность буровых растворов в течение 16 ч при температуре 180 °С. Эта и подобные ей композиции эффективны в поддержании удовлетворительных фильтрационных и реологических свойств растворов, насыщенных солью, в течение 16 ч при температуре 120 °С. [c.486]

    Скорость гетерогенных процессов характеризуется фактическим выходом продукта или коэффициентом скорости процесса в кинетическом уравнении. Фактический выход продукта зависит от множества факторов, как химических, влияющих на скорость реакций, так и физических и гидродинамических, влияющих на скорость массопередачи. Химическими факторами являются константы скоростей реакций. К физическим и гидродинамическим относятся величина хмежфазной поверхности, коэффициент диффузии и другие физические свойства реагентов и продуктов реакции, геометрические параметры аппаратов, факторы, влияющие на турбулентность системы. Вид общего кинетического уравнения зависит от того, в какой области — кинетической, диффузионной или переходной — идет процесс, т. е. соотношения констант скоростей его диффузионных и химических стадий, а также от режима движения фаз. [c.152]

    Пиролиз древесины, осуществляемый ее нагреванием до высоких температур без доступа воздуха, - один из процессов химической переработки древесины. При пиролизе происходит глубокая деструкция высокомолекулярных компонентов древесины - полисахаридов и лигнина с образованием низкомолекулярных продуктов. Термопревращения этих компонентов включают множество разнообразных реакций - термической деструкции, гидролитической деструкции, дегидратации, сопровождающихся реакциями изомеризации, диспропорционирования, окисления, а также вторичными процессами полимеризации, преимущественно конденсаци- [c.353]

    Процесс отщепления карбоксильной группы аминокислот в виде СО, получил название декарбоксилирования. Несмотря на ограниченный круг аминокислот и их производных, подвергающихся декарбоксилиро-ванию в животных тканях, образующиеся продукты реакции —биогенные амины —оказывают сильное фармакологическое действие на множество [c.440]

    При нагревании беизофуроксана с диэтиламином обнаружено наряду с указанным выше продуктом (10%) множество других продуктов реакции [153а] (см. разделы 1.2.1.1, I.2.2.6, 1.2.5.3,1.6.1.2). [c.115]

    Реагирующая масса материала состоит из множества пор и тонких каналов разлр1ЧН0Й конфигурации, через которые и нроникает газ, реагирующий на стенках этих каналов. Если диаметр капилляров значительно превышает среднюю длину свободного пути пробега молекул, то перенос реагирующего газа, а также продуктов реакции ио этим каналам может осуществляться путем фильтрации и диффузии. [c.113]


Смотреть страницы где упоминается термин Множества продуктов реакции: [c.525]    [c.10]    [c.180]    [c.52]    [c.67]    [c.88]    [c.25]    [c.209]    [c.244]    [c.276]    [c.11]    [c.210]   
Теория рециркуляции и повышение оптимальности химических процессов (1970) -- [ c.301 ]




ПОИСК





Смотрите так же термины и статьи:

Множество

Продукты реакции



© 2025 chem21.info Реклама на сайте