Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронодонорные свойства

    Энергия связи 51—О (461 33 кДж/моль) гораздо выше, чем у связей С—С и С—О (335 4-356 кДж/моль), а ее полярность 1 = (4,35,0) 10 ° Кл-м намного меньше вычисленной из электроотрицательностей кремния и кислорода, хотя и выше полярности связи С—О [д, = (3,03,7) 10 ° Кл-м. Длина связи (0,163 нм) ца (Ц)2 нм меньше суммы ковалентных радиусов 51 и О. В силоксанах угол связи 51—О—51 (130—160°) значительно больше обычного валентного угла кислорода в 5/ -гибридизации (109°) и не является жестким. Электронодонорные свойства кислорода в них заметно ослаблены по сравнению с их углеродными аналогами. Эти аномалии объясняются участием р-электронов си-локсанового кислорода и вакантных З -орбиталей кремния в Рл — л-сопряжении, которое усиливается под влиянием электроноакцепторных и ослабляется под влиянием электронодонорных заместителей у кремния. Оно не препятствует свободному вращению вокруг связи 51—О, потенциальный барьер которого очень мал (не более нескольких десятых килоджоуля на моль). В цикло- [c.462]


    Чтобы уменьшить или исключить влияние поверхности металла на образование губчатого полимера, применяют метод пассивации поверхности. Широко используют обработку поверхности металлических аппаратов водными растворами солей, обладающих электронодонорными свойствами (нитритами, фосфитами, сульфитами). Механизм действия пассивации заключается в разрушении перекиси с образованием прочной пленки указанных продуктов на поверхности металлов. [c.297]

    У а-замещенных нафталина, если заместитель обладает электроноакцепторными свойствами (—/-эффект или —I- и —М-эффекты), электрофильный реагент атакует одно из а-по-ложений другого незамещенного кольца. Если же заместитель обладает электронодонорными свойствами, то электрофильный реагент атакует положение 4 этого же кольца. Следует отметить, что орго-ориентация (вступление заместителя в положение 2) почти не наблюдается. [c.352]

    Трифторид азота NF3 в обычных условиях — бесцветный газ (т. кип. —129°С, т. пл. —209°С). Получают его при окислении аммиака фтором. Молекула NFs имеет пирамидальное строение (см. рис. 38), dNF=l,37A, FNF=102°. В отличие от H3N дипольный момент NF3 очень мал, всего 0,2D (стр. 81). Электронодонорных свойств NF3 практически не проявляет. По отношению к нагреванию и различным химическим воздействиям трифторид весьма устойчив, вступает в реакции только выше 100°С. В воде он практически нерастворим, гидролиз начинает протекать лишь при пропускании электрической искры через смесь его с водным паром. [c.397]

    Превращение пирамидальной молекулы НдР в тетраэдрический нон РН1 должно сопровождаться существенным изменением валентного угла - ИРН (от 93,7 до 109,5°), поэтому электронодонорные свойства Н3Р значительно ослаблены по сравнению с H3N. Так, фосфин в воде растворяется, но соединений при этом не образует. [c.368]

    Кислотные свойства. Ароматические одноосновные кислоты — более сильные кислоты, чем их алифатические аналоги. Например, р/(а бензойной кислоты равно 4,20 (р/Са уксусной кислоты составляет 4,75). Это объясняется значительным электроноакцепторным характером бензольного кольца, которое оттягивает электроны от карбоксильной группы (в противоположность действию алкильных радикалов, связанных с этой группой). Вместе с тем бензольное кольцо может проявлять и электронодонорные свойства (в сравнении с водородным атомом). В этом легко убедиться, сопоставляя кислотность муравьиной кислоты, рКа которой равно 3,75, с бензойной (р/Са = 4,20). Таким образом, говоря о природе бензольного ядра, необходимо учитывать его возможные электронодонорные или электроноакцепторные свойства, которые могут проявляться в зависимости от электронной природы групп, с которыми оно связано. [c.321]


    Отрицательное влияние азотистых соединений объясняется необратимой хемосорбцией их катализаторами, вследствие их ярко выраженных электронодонорных свойств, а также высокой химической устойчивостью, что делает недоступной активную поверхность катализатора для реагирующих молекул. С другой стороны, они содержат в себе основную массу металлов, которые после регенерации в виде окислов остаются в порах катализаторов. [c.108]

    Электронодонорные свойства фосфин проявляет только при действии на него наиболее сильных доноров протонов (НСЮ , HI), например лри смешивании газообразных И3Р и HI  [c.368]

    Электронодонорные свойства Н2О проявляются в оксониевых соединениях, аквакомплексах и кристаллогидратах. Очень прочно удерживает НгО ион [Сг (НгО) б] период полуобмена НгО в этом комплексе с водой в растворе равен нескольким часам. В большинстве других аквакомплексов эта величина составляет менее 10- с. [c.440]

    При смешанной конденсации альдегидов и кетонов в реакцию вступает карбонильная группа альдегидов, являющаяся более активной (алкильный радикал обладает электронодонорными свойствами, вследствие чего электрофильная способность карбонильного углерода кетона уменьшается) кетоны же являются донорами атомов водорода. [c.181]

    Из-за различия электроотрицательностей атомов углерода (2,5) и водорода (2,1) на атоме углерода группы СНз появляется некоторый избыток электронной плотности, а на атомах водорода — некоторый дефицит ее, а вся группа в целом приобретает электронодонорные свойства ( + /-эффект)  [c.9]

    Кроме природы уходящей группы X в субстрате КК К"СХ положительный заряд на атакуемом атоме углерода зависит от характера групп, с которыми он связан тремя остальными валентностями. В том случае, когда группы и, R, и" обладают электронодонорными свойствами, положительный заряд на атакуемом атоме углерода уменьшается и, следовательно, уменьшается реакционная способность субстрата в реакциях нуклеофильного замещения. [c.113]

    В то же время на поведение гидроксильного водорода оказывают большое влияние алкильные радикалы, связанные с гидроксилом. Обладая электронодонорными свойствами, эти радикалы повышают электронную плотность на атоме кислорода, что вызывает понижение устойчивости аниона, а следовательно, и вероятность отщепления протона  [c.108]

    Из карбоновых кислот самой сильной является муравьиная кислота остальные члены гомологического ряда—довольно слабые кислоты (см. табл. 10). Известно, что алкильные радикалы обладают электронодонорными свойствами (-Ь/-эффект) и тем самым понижают положительный заряд на углероде карбонила. Это и приводит к уменьщению перемещения электронной плотности со стороны гидроксильной группы  [c.145]

    Большая скорость реакции сочетания фенолят-ионов по сравнению с феноло.м объясняется тем, что группа —0 обладает большими электронодонорными свойствами, чем группа —ОН  [c.192]

    Электронодонорные свойства молекул воды, выступающих здесь в качестве лигандов, в сочетании с хорошо выраженной склонностью У(У) к восстановлению приводят к существенному переносу электронной пары кислорода молекул воды к ванадию, иначе говоря, увеличение координационного числа атома ванадия сопровождается переходом его в более низкое состояние формального окисления. Реакция (1.18) обратима отщепление координационно-связанной воды сопровождается окислением [c.26]

    В ряду НзЫ — Н3Р — НзАз — Нз5Ь — В1Нд электронодонорные свойства молекул ослабевают. Так, если производные аммония вполне устойчивы, то арсоний-ион АзН обнаружен лишь с помощью ИК-спектра (в смеси НдАз и Н1 при низкой температуре). Ионы 5ЬН и В1Н4 вообще не обнаружены. [c.382]

    Роль носителя в реакции гидрогенолиза циклопентана и его простейших гомологов в присутствии различных платиновых катализаторов исследована в работах [143, 151, 189—191]. Оказалось, что селективность гидрогенолиза метил- и этилциклопентанов по связям а, б и в (см. с. 123) и соответствующие им значения кажущихся энергий активации (Е) в значительной мере зависят от носителя. Наиболее низкие энергии активации получены нри применении (10% Pt)/Si02 [190], наиболее высокие —на (20% Pt)/ [143, 151]. На Pt/ энергии активации гидрогенолиза метил- и этилциклопентанов, а также самого циклопентана довольно близки (155—163 кДж/моль). При использовании в качестве носителей AI2O3, SIO2 и алюмосиликата энергии активации гидрогенолиза различаются сильнее метилциклопентан < этилциклопентан < циклопентан. Предполагают [190], что найденная закономерность связана с заметным проявлением электронодонорных свойств алкильных радикалов под влиянием кислотных свойств оксидных носителей использованных бифункциональных катализаторов. По-видимому, в случае СНз-группы это влияние сказывается сильнее, чем для СаНз-группы, что и приводит к найденным последовательностям энергий активации. Энергии активации гидрогенолиза этих трех углеводородов в присутствии названных катализаторов, а также относительные выходы продуктов гидрогенолиза [c.140]

    Топливомаслорастворимые ПАВ, активные группы которых обладают электронодонорными свойствами по отношению к данному металлу, называют ингибиторами анодного действия. Схематически взаимодействие подобных соединений и металла можно представить так  [c.300]


    Несмотря на более высокую энергию, связь С — Он СО гораздо более реакционноснособка сильные электронодонорные свойства этой молекулы и прочность координационных связей в карбонильных комплексах (а- и я-связи см. разд. И.1.В) является результатом гибриди-зованного состояния атома углерода (зр) в поляризованной тройной [c.190]

    Способность ароматических углеводородов образовывать я- и ст-ком1Плексы значительно возрастает под влиянием таких, обладающих электронодонорными свойствами, заместителей, как, например, метильные группы. Последние за счет гиперконъюгацион-ного эффекта увеличивают электронную. плотность орто- пара-положений ароматичеакого кольца, вследствие чего протон или иная электрофильная частица присоединяется именно в эти положения молекулы  [c.18]

    Ингибиторы анодного действия содержат в молекуле углеводородный радикал и функциональную группу с электронодонорными свойствами. На рис. А представлена схема взаимодействия анодных ингибиторов (нитратов и сульфонатов) с поверхностью металла. В этом случае на металле образуется положительно заряженный слой диполей, способствующий уменьшению энергии выхода электронов. Ингибиторы этого типа адсорбируются на анодных участках корродирущего металла, изменяют фазовый состав поверхностного слоя металла, обладают высокими защитными свойствами по отношению к черным и цветным металлам. [c.58]

    Наличие электронодонорных свойств у алкильных групп можно обнаружить, сравнив кислотность (р/Са) изомасляной и пи-валиновой кислот с кислотностью уксусной кислоты  [c.113]

    Как следует из приведенных выше данных, в некоторых случаях конфигурация субстрата остается неизменной. Это наблюдается тогда, когда в молекуле субстрата в непосредственной близости от асимметрического атома углерода находятся группы, обладающие электронодонорными свойствами. В результате гетеролиза соединений такого типа возможна внутримолекулярная атака этрй группы атома углерода со стороны, противопо- [c.137]

    Предпочтительное отщепление этилена при разложении ди (н-пропил) диэтиламмонийгидроксида (см. выше) можно объяснить аналогичным образом. Если принять во внимание электронодонорные свойства метильной группы и появление пространственных тагруднений для акцептора протона (НО-), можно утверждать, что легче отщепить протон из -положения этильной группы, чем из соответствующего положения пропиль-ной группы. [c.180]

    Известно, что индуктивный эффект быстро затухает по цепи а-связей. Однако девять ато.мов водорода трех метильных групп в грег-бутильной группе, несмотря на большее удаление их от бензольного кольца по сравнению с атомами водорода метильной группы, оказывают более сильное влияние на электронодонорные свойства трет-бутильной группы, чем три атома водорода в метильной группе. В соответствии с этим при нитровании трет-бутилбензола образуются большие количества мета- и лара-изомеров, чем при нитровании толуола (табл. 5.2). [c.332]

    Если учитывать только большую электроотрицательность азота по сравнению с углеродом и более легкую поляризуемость кратных связей по сравнению с ординарными, то следовало бы ожидать, что в изоцианогруппе на атоме азота сосредоточивается избыточная электронная плотность, и эта группа должна обладать еще более электронодонорными свойствами, чем аминогруппа. [c.344]

    При проведении реакции не удается остановиться на стадии образования продукта моноалкилирования, так как этот продукт вследствие электронодонорных свойств алкильной группы более реакционноспособен, чем исходный ароматический субстрат. Для ограничения выхода полиалкилбензолов необходим большой избыток ароматического субстрата или присутствие катализатора, способного избирательно образовывать л-комплекс с более основным продуктом реакции. [c.386]

    Таким образом, алкильные радикалы, обладая электронодонорными свойствами, замедляют эту реакцию, а в случае хлораля — за счет электроноакцепторного действия группы СС1з (—/-эффект) происходит увеличение реакционной способности карбонильного углерода. Следует обратить внимание на то, что в случае кетонов в отличие от альдегидов с карбонильной группой связаны два радикала, понижающие активность молекулы. Вот почему альдегиды-обладают большей химической активностью, чем кетоны. [c.127]

    Учитывая электронодонорные свойства алкильной группы R, можно утверждать, что реакционная способность образовав- [c.394]

    Реакцию азосочетания проводят в средах, близких к нейтральным. Если в качестве азокомпонента используют амины, оптимальное значение pH находится в интервале 5—9. Значения рН<5 неприемлемы, поскольку в этих условиях амины могут образовывать соли, катионы которых не только не обладают электронодонорными свойствами, но и сами могут быть электрофильными частицами. При рН>10 сочетание проводить тоже нельзя, так как в этих условиях из диазоний-катиона образуется диазотат-анион (62), неспособный к реакции азосочетания (подробнее см. разд. 6.2.2). [c.440]

    Ранее отмечалось (см. разд. 6.2.1), что при действии азотистой кислоты на первичные амины невозможно остановить реакцию на стадии образования соли диазония, так как алкильные группы обладают электронодонорными свойствами, что благоприятствует распаду диазоний-катиона с выделением молекулы азота и образованием карбокатиона. [c.462]

    Если же атакующий реагент не располагает электронной парой для вновь образующейся ковалентной связи, то он является элек-трофильным или электроноакцепторным. В качестве таких реагентов чаще всего выступают Н+, катионы металлов, катионы галогенов и некоторые соли. Реакции, идущие с участием таких реагентов, называются реакциями электрофильного замещения (соответственно также отщепления или присоединения). При этом реагирующая молекула проявляет электронодонорные свойства, так как новая связь образуется за счет ее пары электронов. Такая реакция приводит к образованию конечного продукта и катиона — промежуточной частицы  [c.25]

    Заместители (орнентанты) первого рода ОН, OR, O OR, SH, NH,2, NHR, Alk, Hai. Эти заместители не имеют кратных связей. Они способны смещать электронную плотность в сторону кольца, т. е. обладают электронодонорными свойствами. Облегчая вхождение электрофильных реагентов в бензольное кольцо, эти заместители ориентируют новый заместитель в орто- и пара-положения. Такие заместители называются орто- и /uipa-ориентан-тами. При действии нуклеофильных реагентов реакция замещения идет с трудом, а реагент становится в мета-положение. [c.286]

    От N к В1 участие з-орбитали в зр -гибридизации уменьшается, поэтому в ряду НзН — НзР — НзАз — НзРЬ — В1Нз электронодонорные свойства молекул ослабевают. Так, если производные аммония вполне устойчивы, то арсоний-ион АзН обнаружен лишь с помощью ИК-спектра (в смеси НзАз и Н1 при низкой температуре). Ионы ЗЬН -и BiH вообще не обнаружены. [c.426]

    Тройная связь в N2 обладает повышенной устойчивостью также к реакциям присоединения это связано с неполярностью молекулы N2 и ее высоким потенциалом ионизации. Напротив, группы —С = С— и —С = Ы проявляют п-электронодонорные свойства. В последние годы было показано, что и молекула N2 может выступать в качестве я-донорного лиганда, образуя комплексы при нормальных условиях. Были получены комплексы типа [Ки(МНз)5 2]Х2, (P,Rз)2IrN2 l, (РКз)2СоЫ2 и др. [c.531]

    Из характера реакции сразу же следует, что переход ко все более полярным растворителям должен резко повышать скорость замещения вследствие ускорения соль-ватолитического распада исходной молекулы на ионы. Независимость определяющей скорость реакции медленной стадии диссоциации от концентрации нуклеофила может быть использована для определения характера реакции изменение концентрации Z не должно существенно сказаться на скорости замещения S.vi и будет влиять на скорость замещения 5д-2. Добавление иона X" будет замедлять скорость 5л 1-процесса, смещая равновесие диссоциации влево. Так, при гидролизе алкилхлоридов повышение концентрации ионов С1" тормозит процесс (солевой эффект). Если при переходе от одного радикала R к другому электронодонорные свойства R нарастают, то сольватолитический распад молекулы облегчится, и скорость замещения Saj возрастет. Если же процесс идет по механизму 2, то скорость замещения замедлится, поскольку нуклеофильный заместитель Z встретит в таком случае большее противодействие со стороны группы R. Отрицательный знак реакционной константы р для реакции сольволиза бензгидрилхлоридов дает важную информацию о том, что процесс течет по механизму 5лп, а не 5a 2 [c.192]

    Электронодонорные свойства молекулы N>13 проявляются и в том, что она в качестве лигяндд входит во многие комплексные соединения. [c.402]

    Таким образом, прививка к поверхности силикагеля электронодонорных или электроноакцепторных групп позволяет увеличить селективность по отношению к веществам, обладающим, соответственно, электроноакцепторными или электронодонорными свойствами. JЗoз MOжнo ть образования в присутствии данного элюента комплексов с переносом заряда долж на быть исследована с помощью электронных спектров. [c.330]

    В пользу предположения, что главной причиной изотопных эффектов р-дейтерия является гиперконъюгация, свидетельствует тот факт, что максимальный эффект наблюдается, когда дейтерий находится в анти-положетт к уходящей группе [44] (так как все атомы в резонансной системе должны быть копла-нарны, планарность системы В—С—С—X должна значительно увеличивать гиперконъюгацию), а также тот факт, что вторичные изотопные эффекты могут передаваться через ненасыщенные системы [45]. Имеются данные о том, что по крайней мере некоторые изотопные эффекты р-дейтерия имеют стерическое происхождение [46] (так, группа СОз отличается меньшими сте-рическими требованиями, чем группа СНз) предлагалось также объяснение, основанное на учете эффектов поля (группа СОз обладает, по-видимому, лучшими электронодонорными свойствами, чем группа СНз [47]) тем не менее в большинстве случаев наиболее вероятной причиной этих эффектов следует считать гиперконъюгацию [48]. Трудности объяснения вторичных изотопных эффектов отчасти связаны с их небольшой величиной, не превышающей обычно 1,5. Кроме того, дополнительные осложнения возникают из-за их изменения с температурой. Описан, например, случай, когда величина йн/ в составляла 1,00 + 0,01 при 0°С, 0,904-0,01 при 25°С и 1,15 0,09 при 65 С [49]. Какова бы ни была причина вторичных изотопных эффектов р-дейтерия, их величина хорошо коррелирует с карбокатионным характером переходного состояния, и они служат полезным инструментом для исследования механизмов реакции. [c.297]


Смотреть страницы где упоминается термин Электронодонорные свойства: [c.82]    [c.116]    [c.201]    [c.430]    [c.285]    [c.327]    [c.527]    [c.204]   
Органическая химия (1990) -- [ c.28 , c.30 ]

Курс теоретических основ органической химии издание 2 (1962) -- [ c.0 ]

Курс химии Часть 1 (1972) -- [ c.126 , c.242 ]

Химия координационных соединений (1985) -- [ c.353 ]




ПОИСК





Смотрите так же термины и статьи:

Электронодонорные



© 2025 chem21.info Реклама на сайте