Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектральный анализ лазерный

    Масс-спектральное изучение пиролиза угля под действием лазерного излучения, при котором температура вещества практически мгновенно достигает нескольких тысяч градусов, подтвердило тот факт, что уголь содержит стабильные органические соединения (алканы, замещенные ароматические углеводороды), сорбированные в полимерной матрице [64]. Можно полагать, что эта методика позволит полнее установить как молекулярную, так и надмолекулярную структуру угольных объектов. Наиболее перспективным является сочетание пиролитической масс-спектрометрии с такими методами анализа, как [c.77]


    Для обеспечения успеха предстоящих поисковых работ необходимо еще выше поднять научно-технический уровень структурно-химического микроанализа. Помимо пшроко применяемого в лабораторной практике метода локального рентгеноспектрального анализа, должны найти дальнейшее развитие методы ионной масс-спектральной микроскопии, ОЖЕ-спектро-скопии и лазерной спектрографии. Новые возможности изучения поверхностных дефектов открываются при использовании сканирующего (растрового) электронного микроскопа. [c.266]

    Лазерный масс-спектральный метод — один из методов локального анализа, получение микроплазмы при помощи лазерного источника в вакуумной измерительной камере с последующим разложением на масс-спектры [46]. [c.19]

    Решение задачи получения веществ особой чистоты невозможно без решения задачи анализа этих веществ на содержание в них примесей. В соответствии с этим значительная часть материала сборника посвящена изложению современного состояния таких чувствительных методов анализа, как искровая, лазерная, вторично-ионная масс-спектрометрия, спектральные методы, газовая хроматография. Большого внимания заслуживают сообщения по определению чистоты металлов путем измерения относительного остаточного электросопротивления. [c.4]

    Со времени выхода в свет четвертого издания учебника (1975 г.) в аналитической химии определились новые пути развития. Особо следует отметить, что наряду с химическими и физикохимическими методами анализа, нашедшими широкое применение в науке и производстве, в химико-аналитических заводских и научно-исследовательских лабораториях все чаш,е проводят анализ физическими методами (эмиссионная, пламенная, атомно-абсорбционная спектроскопия, ядерный магнитный резонанс — ЯМР, искровая масс-спектрометрия, рентгеновский спектральный, флюоресцентный, радиометрические и др.), позволяющие устанавливать с достаточной точностью микроэлементный состав разнообразных природных веществ, а также технических материалов, применяемых в атомной, полупроводниковой и лазерной технике (особо чистых веществ, катализаторов, монокристаллов и др.). Причем в некоторых случаях, например методами масс-спектрометрии возможно регистрировать в течение одного эксперимента 70—75 основных и примесных элементов в образце анализируемого вещества массой в несколько миллиграммов. [c.9]


    При фокусировке лазерного света на малую площадь с размерами (в пределе) порядка длины световой волны можно получить большие интенсивности, обеспечивающие быстрый нагрев и испарение локальной области. Это св-во лазера легло в основу микроспектрального эмиссионного анализа атомов и локального масс-спектрального анализа молекул. [c.565]

    Для проведения анализа металлов и полупроводников был изготовлен времяпролетный масс-спектрометр с лазерным ионным источником. В качестве масс-спектрометра был использован серийный прибор типа МХ-1303. Испарение и ионизация атомов анализируемого вещества осуществлялось ОКГ, работающим в режиме с модуляцией добротности резонатора. Регистрация масс-спектра осуществлялась вторичным электронным умножителем, осциллографом С1-29. Работа прибора проверялась при анализе спектральных эталонов стали, и было установлено, что чувствительность прибора к данной примеси постоянна. Аналитические характеристики установки оказались следующими нижний предел обнаружения примесей около 5.10 %, воспроизводимость определения не превышагт 10%, разрешающая способность на уровне 10% составляет 180, информационная способность 10 бит. Рис. 6, библ. 4 назв. [c.236]

    Перевод Т1С14 и У0С1д в окислы Т102 и У О с последующим спектрально-эмиссионным анализом также не даст существенных преимуществ, так как при использовании дифракционных спектрографов достигается граница определения этих веществ не ниже 10- % [4]. Анализ же порошков на твердотельных масс-спектрометрах с лазерным и искровым источниками ионов затруднен вследствие возможного разрушения таблетированного под большим давлением порошка. [c.209]

    С другой стороны, тесные контакты коллоидной химии со смежными дисциплинами способствовали обогащению ее экспериментальной базы. Наряду с такими классическими методами эксперимента, родившимися именно в коллоидной химии, как определение поверхностного натяжения и двухмерного давления, ультрамикроскопия, центрифугирование, диализ и ультрафильтрацня, наблюдение разнообразных электрокинетичеоких явлений в дисперсных системах, дисперсионный анализ и порометрия, многочисленные прецизионные адсорбционные методы, изучение рассеяния света (опалесценции) и т. п., в разных разделах коллоидной химии нашли эффективное применение всевозможные спектральные методы ЯМР, ЭПР, УФ- и ИК-спектроскопия, гашение люминесценции, многократно нарушенное полное внутреннее отражение, эллипсометрия (с широким использованием лазерной техники), малоугловое рассеяние рентгеновских лучей и другие рентгеновские методы, радиоактивные изотопы, все виды электронной микроскопии. Большие перспективы открывает привлечение современных физических методов исследования поверхностей с использованием медленных электронов, масс-спектроскопии вторичных ионов и т. п. [c.9]

Таблица 8-2. Аналитические характеристики наиболее важных приборов, используемых для элементного анализа. Аналитические характеристики включают пределы обнаружения (ПО) в растворе (нг/мл) или твердой пробе (млн ), помехоустойчивость (робастность, отсутствие влияния основы), селективность (отсутствие спектральных помех) и воспроизводимость. Инструментальные характеристики включают желательную форму пробы, жидкую или твердую, минимальный расход пробы и максимальную солевую концентрацию в случае раствора. АЭС — атомно-эмиссионная спектрометрия, А АС— атомно-абсорбционная спектрометрия, МС —масс-спектрометрия, ИСП — индуктивно-связанная плазма, ЛТР — лампа с тлеющим разрядом, ГП — графитовая печь, ТИ — термоиониэация, ИИ — искровой источник, ЛИФС - лазерно-индуцированная флуоресцентная спектрометрия, РФСВД — рентгенофлуоресцентная спектрометрия с волновой дисперсией Таблица 8-2. <a href="/info/140729">Аналитические характеристики</a> <a href="/info/410326">наиболее важных</a> приборов, используемых для <a href="/info/5100">элементного анализа</a>. <a href="/info/140729">Аналитические характеристики</a> включают <a href="/info/5532">пределы обнаружения</a> (ПО) в растворе (нг/мл) или <a href="/info/5543">твердой пробе</a> (млн ), <a href="/info/1403099">помехоустойчивость</a> (робастность, <a href="/info/1418543">отсутствие влияния</a> основы), селективность (отсутствие <a href="/info/140811">спектральных помех</a>) и воспроизводимость. <a href="/info/142820">Инструментальные характеристики</a> включают желательную <a href="/info/583350">форму пробы</a>, жидкую или твердую, <a href="/info/146195">минимальный расход</a> пробы и максимальную <a href="/info/481813">солевую концентрацию</a> в случае раствора. АЭС — <a href="/info/141079">атомно-эмиссионная спектрометрия</a>, А АС— <a href="/info/140797">атомно-абсорбционная спектрометрия</a>, МС —<a href="/info/6125">масс-спектрометрия</a>, ИСП — <a href="/info/141592">индуктивно-связанная плазма</a>, ЛТР — лампа с тлеющим разрядом, ГП — <a href="/info/140765">графитовая печь</a>, ТИ — термоиониэация, ИИ — <a href="/info/141596">искровой источник</a>, ЛИФС - лазерно-индуцированная <a href="/info/85822">флуоресцентная спектрометрия</a>, РФСВД — <a href="/info/141885">рентгенофлуоресцентная спектрометрия</a> с волновой дисперсией
    При химическом анализе вкраплений, микрофаз металлических слитков, геологических и археологических образцов при послойном анализе пленок при выяснении состава пятен, штрихов в рукописях, в объектах судебной экспертизы и т. д. требуется проводить локачьный анатз. При таком анализе вводят новую характеристику метода— пространственное разрешение, т. е. способность различать близко расположенные участки образца. Пространственное разрешение определяется диаметром и глубиной области, разрушаемой при анализе. Наиболее высокое пространственное разрешение, достигаемое современными методами локального анализа, — 1 мкм по поверхности и до 1 нм (т. е. несколько моноатомных слоев) по глубине. В локальном анализе используют рентгеноспектральные методы (электронно-зондовый микроанализатор), атомно-эмиссионные спектральные методы с лазерным возбуждением, масс-спектрометрию. [c.38]



Смотреть страницы где упоминается термин Масс-спектральный анализ лазерный: [c.182]   
Методы количественного анализа (1989) -- [ c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ масс-спектральный

Спектральный анализ



© 2024 chem21.info Реклама на сайте