Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стороны энантиотопные в молекула

    Энантио-дифференцирующие реакции — это реакции, в которых дифференциация происходит в результате воздействия хиральности реагента или окружающей реакционной среды, а энантио-дифференцирующая способность определяется как способность реагента преимущественно атаковать одну из энантиофасных или одну из энантиотопных сторон в молекуле субстрата. Поскольку в ферментативных реакциях достигается почти полная энантио-дифференциация, многими авторами эти реакции рассматриваются как биохимический асимметрический синтез. Они могут быть также названы реакциями абсолютного асимметрического синтеза в широком смысле. (В строгом смысле, как принято и в данной книге, абсолютный асимметрический синтез — это реакция, в которой дифференциация происходит только в результате воздействия хиральных физических сил.) [c.96]


    Поскольку можно полагать, что илид осуществляет дифференциацию незамещенных энантиотопных сторон в молекуле циклогек-санона, то реакцию следует отнести к энантиотопным дифференцирующим реакциям [128]. [c.147]

    Точно так же как различают энантиотопные или диастереотопные атомы и группы, можно различить энантиотопные или диастереотопные поверхности, или стороны в тригональных молекулах. Здесь также имеется три случая  [c.174]

    Фермент различает неэквивалентность энантиотопных сторон двойной связи и вовлекает во взаимодействие определенным образом ориентированную молекулу (рис. 3.17). Поворот молекулы на 180°, т. е. поворот ее другой стороной двойной связи к поверхности фермента, нарушает субстрат-ферментное взаимодействие. [c.85]

    Как объяснить этот результат В процессе бромирования бутана в качестве промежуточного соединения образуется свободный радикал - вторичный бутил-радикал, который за счет инверсии является практически плоским относительно атома углерода, у которого наблюдается замещение (подробнее о строении свободных радикалов см. в разд. 2.4.1). Атака такой частицы по атому углерода молекулой брома равновероятна как с одной (/), так и с другой (2) стороны плоскости, что и приводит к образованию энантиомеров в равномолекулярных количествах. Каждая сторона бутильного радикала является энантиотопной. [c.197]

    В качестве особого случая энантиотопных дифференцирующих реакций можно привести реакцию (5.54). Здесь хиральный реагент осуществляет дифференциацию энантиотопных сторон, находящихся с двух сторон относительно энантио-нулевой плоскости молекулы субстрата. Однако, так как имеется очень мало примеров этого типа реакций, этот процесс следует рассматривать как энантиотопную дифференцирующую реакцию. [c.148]

    ТО получаются энантиомерные дейтероэтанолы в зависимости от того, какая сторона плоскости молекулы атакуется. Плоскость, содержащая хр -связь и хр -прохиральный центр, является энантио-нулевой плоскостью, а обе стороны этой плоскости — энантиотопными сторонами и поэтому называются энантиофас-ными (епап11о асе). [c.83]

    Топические взаимоотношения помогают также охарактеризовать пространство вокруг атомов и связей в молекуле. В частности, обе стороны плоскости двойной связи, образованной р -гибриди-зованными атомами углерода, могут быть гомотопными или стерео-топными. Стороны плоскости карбонильной группы могут быть гомотопными, энантиотопными или диастереотопными. Формальдегид (88) образует только один полуацеталь (89), так как обе стороны его плоской молекулы равноценны или гомотопны. Однако в случае бензальдегида (90) обе стороны плоскости, в которой лежит молекула, энантиотопны, и поэтому присоединение цианид-иона, равновероятное с обеих сторон плоскости, приводит к двум энантиомерным нитрилам миндальной кислоты (91) и (91). В при- [c.48]


    По аналогии с энантиотопными или диастереотопными атомами и группами в тригональных молекулах различают энантиотопные или диастереотопные поверхности. Рассмотрим молекулы формальдегида или ацетона. Атака ахиральным реагентом А по карбонильному углероду пр1иводит к одному и тому же продукту. Таким образом, две поверхности (две стороны плоскости карбонильной группы) эквивалентны (гомотопны)  [c.70]

    Карбонильные соединения с энантиотопными сторонами вводят в реакцию с огаически активными реагентами. Чаще всего используют гидридное восстановление оптически активными гидридами алюминия и бора. Хиральные гидриды получают из различных оптически активных молекул, содержащих группы, способные координироваться с бором или алюминием с образованием конформационно жестких комплексов. Например, 2,2 -дигидрокси-1,1 -динафтил (ХЫХ), молекулы которого обладают аксиальной хиральностью, может быть разделен на энантиомеры, из которых получают отттически активные комплексные гидриды алюминия  [c.72]

    Это соединение хорошо растворимо в органических растворителях (например, в СН2С12), поскольку обладает ковалентной связью В-О. По-видимому, по стерическим причинам молекула бензальдегида предпочтительнее подходит лишь с одной из энантиотопных сторон енола, что и обеспечивает наблюдаемую энантиоселективность. [c.469]

    Другими словами, два положения над и под плоскостью карбонильной группы в ацетальдегиде можно рассматривать как энан-тиотопные при условии, что метильная группа в среднем считается симметричной. Присоединение ахиральной молекулы НУ к ацетальдегиду дает равные количества двух энантиомерных продуктов они образуются при атаке с той или иной из двух прохи-ральных (энантиотопных) стерон, как показано на схеме (38). Если сам альдегид является хиральным, тогда две стороны [c.507]

    Согласно Хансону [8], если получают хиральную совокупность при замене точечного лиганда в ограниченной нехиральной совокупности точечных лигандов на новый точечный лиганд, то первоначальная совокупность является прохиральной . Следовательно,. любая молекула, содержащая энантиотопные группы, является прохиральной. Атомы, которые несут энантиотопные группы [8] или стороны [9], также называют прохиральны-ми . Атомы с диастероотопныыи группами могут быть или не быть прохи-ральными. [c.19]

    Для проверки диастереотопных отношений групп также можно применить критерий замещения. Если замещение каждой группы С. на хиральную или ахиральную группу О дает ряд диастереомеров, то группы О диастереотопны. Этот критерий можно применить к рядам диастереотопных атомов водорода, изображенных на рис. 11. Замещение одного или другого диастереотоп-ного атома водорода на дейтерий приводит к диастереомерам, которые можно легко различить, обозначив их цис-транс, экзо-зндо или аксиалъный-экваториальный. Диастереомеры могут быть хиральными, например производные приведенных выше трех хиральных молекул, или ахиральными, например производные хлорэтилена, бициклобутана и циклогексана в конформации кресла. В 2-хлориндане (Х1д) и в трициклической молеку.ле (Х1з) наборы диастереотопных атомов водорода имеют энантиотопные аналоги. Поэтому замещение диастереотопных атомов водорода в этих молекулах на атомы дейтерия дает хиральные диастереомеры, даже если до замещения сами молекулы были ахиральны. При подходящем масштабе времени наблюдения (см. разд. VI) диастереотопные группы от.личаются по своим физическим и химическим свойствам (например, по химическим сдвигам в ЯМР-спектрах, по скоростям реакций) даже в ахиральном впе-молекулярном окружении. Подход хирального или ахирального реагента к двум диастереотонным сторонам приводит к двум диастереомерным переходным состояниям. Так, восстановление кетона Х1и алюмогидридом лития дает два мезо-диастереомера. [c.29]

    Если молекула содержит прохиральный центр или р -прохи-ральный центр, то плоскость симметрии, в которую входит этот центр, будет называться в данной книге энантио-нулевой плоскостью. Группы, располагающиеся симметрично относительно этой плоскости, находятся, как говорят, в энантиомерных отношениях, а расположение таких групп называется энантиотопным соотношением. Локализация групп при энантиотопных отношениях называется энантиотопной, а локализованная группа — энантиотопной. Отношение двух сторон в энантио-нулевой плоскости, включающей хр -прохиральный центр, является энантиотопным, и для обеих сторон этой плоскости в настоящей книге вводится термин энантиофасная сторона . Этот термин будет пояснен ниже на различных примерах. [c.81]

    Далее можно допустить, что диастереомерный (А, В ) состав конечного продукта будет определяться стереоснецифичностью рассмотренных выше реакций, т. е. разной вероятностью реализации переходных состоний при подходе молекулы диазоэтана с диастереотопных сторон карбонильной группы соединений (XX) и (XXI). Следовательно, подход молекулы диазоэтана с пространственно менее экранированной стороны будет лимитирующей стадией реакции, определяющей конфигурацию преимущественно образующегося диастереомера (А ). Кроме того, необходимо было бы учитывать и различную ориентацию молекул диазоэтана относительно плоскости карбонильной группы своими энантиотопными сторонами, как это изображено на схеме. Однако сам ход процесса позволяет избежать этого осложнения. Изучение продукта реакции метилметоксибензоилфос-фината (XX) с диазоэтаном методом ПМР (рис. 4) обнаружило, что замена метоксильной группы на метильную не сказывается на его диастерео-мерном составе, т. е. диастереомеры (А ) и (В ) образуются равновероятно. Этот факт можно объяснить следующим образом. Очевидно, при реакциях [c.143]



Смотреть страницы где упоминается термин Стороны энантиотопные в молекула: [c.85]    [c.63]    [c.84]    [c.17]    [c.35]   
Избранные проблемы стереохимии (1970) -- [ c.15 , c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Эму lb сторон

Энантиотопные

Энантиотопные стороны



© 2025 chem21.info Реклама на сайте