Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение молекул оптически активных

    Оптические свойства растворов сахарозы. Тростниковый сахар и продукты его разложения принадлежат к числу оптически активных веществ, т. е. веществ, способных изменять положение плоскости поляризации проходящего через них поляризованного света (света, в котором колебания происходят в определенной плоскости). Оптическая активность связана с наличием в молекуле асимметричных атомов углерода. Оптические изомеры отличаются по своему строению друг от друга, как несимметричный предмет отличается от своего зеркального изображения. По своим физическим и химическим свойствам такие молекулы одинаковы и отличаются только различным по направлению, но одинаковым по величине смещением плоскости поляризации света. Угол смещения плоскости колебаний поляризованного луча называется углом вращения плоскости поляризации. Угол вращения плоскости поляризации а прямо пропорционален толщине слоя с/ и концентрации активного вещества с (Био, 1831 г.) [c.355]


    В 1874 г. Ле Бель и Вант-Гофф независимо друг от друга прищли к заключению, что оптическая изомерия обусловлена различным пространственным строением молекул обоих антиподов. Они ввели в органическую химию фундаментальное представление о тетраэдрической симметрии углерода, т. е. о тетраэдрическом расположении связанных с атомом углерода замещающих групп. С помощью этого представления легко удалось на основании строения молекул оптически активных соединений объяснить и предсказать существование двух оптически изомерных форм. [c.131]

    Во-вторых, наличие асимметрии открывает физике весьма ценные возможности при исследовании строения биологически функциональных веществ и их превращений методами спектро-поляриметрии (см. ниже гл. 5). Физики и химики благодарны живой природе за то, что она наделила свои молекулы оптической активностью. [c.82]

    В классической стереохимии наиболее важными были разделы, связанные с зеркальной (оптической) изомерией. Это отразилось и на содержании книги Основы стереохимии , в которой много места уделено оптически активным веществам. В настоящее время центр тяжести стереохимии явно сместился в область исследования современными физическими методами тонких деталей пространственного строения молекул (конформационные проблемы), а также изучения влияния пространственного строения на реакционную способность (динамическая стереохимия). С развитием спектрополяриметрического метода исследования совершенно иной характер приобрели и разделы, относящиеся к оптической активности. Все эти сдвиги нашли отражение в построении и содержании новой книги. [c.11]

    Способность вращать плоскость поляризации связана с асимметрией в пространственном строении молекул оптически активных веществ. Согласно Ле-Белю и Вант-Гоффу, четыре валентности углерода направлены в пространстве так, что атом углерода как бы находится в центре тетраэдра, а атомы и группы, соединенные с углеродом, размещаются в вершинах тетраэдра. Ле-Бель и Вант-Гофф показали, что если в молекулах вещества имеется хотя бы один атом углерода, соединенный с четырьмя различными атомами или группами, то такие молекулы асимметричны, т. е. не имеют плоскости симметрии, и в этом заключается причина оптической активности вещества. [c.198]

    Опыт показывает, что оптическую активность обнаруживают лишь молекулы, не обладающие плоскостью симметрии и центром симметрии с другой стороны, любые химические превращения, устраняющие асимметрию молекул, обусловливают исчезновение оптической активности. Поэтому можно заключить, что причиной способности многих веществ вращать плоскость поляризации света является несимметричное строение нх молекул. [c.132]


    Создание бутлеровской теории химического строения органических соединений позволило объяснить большинство случаев изомерии. Стало ясно, что они являются результатом различий в химическом строении при одинаковом составе молекул. Однако все же встречались случаи изомерии, которые не поддавались истолкованию и с этих позиций. Это было известное еще с начала XIX в. существование пар оптических антиподов — веществ, полностью совпадающих друг с другом по всем физико-химическим свойствам, но имеющих противоположный знак вращения плоскости поляризации света. Из числа таких оптически активных веществ в то время были известны, например, винная и молочная кислоты, амиловый спирт, терпены, сахара и др. Не находили объяснения также и различия физико-химических свойств у некоторых пар непредельных соединений, которые, по всем данным, имели одинаковое химиче- [c.33]

    Данные колебательной оптической активности также могут существенно помочь в установлении электронного строения молекул. [c.213]

    Если принять плоское строение циклогексана, то можно предположить наличие в молекуле плоскости симметрии. При конформационном рассмотрении обнаруживается ошибочность такого взгляда. Находясь по одну сторону кольца (цис-конфигурация), заместители вынуждены размеш,аться на различных по характеру связях а н е. При конверсии цикла с одинаковыми заместителями картина не меняется. Для 1,2-цис-дизамещенных циклоГексана возможна лишь экваториально-аксиальная конформация с переходом а,е е,а. Обе конформации оптически активны. [c.135]

    Оптически активные вещества, вращающие плоскость поляризации вправо, обозначаются символом d, а влево 1. Угол вращения зависит от строения молекул вещества, толщины слоя, температуры и длины волны света. [c.379]

    Определение абсолютной конфигурации молекул необходимо при изучении оптической активности химических соединений. Важно знать, с какой абсолютной конфигурацией связан тот или иной знак вращения плоскости поляризации в растворе оптически активного соединения. Определение абсолютной конфигурации для какого-либо одного соединения позволяет судить о конфигурации и его производных продуктов реагирования и связывать их строение с их оптической активностью. Подразумевается, конечно, что в процессе реагирования не происходит изомеризации — переход ко второму структурному антиподу. Но, как правило, те вещества, которые удается изолировать в растворах в виде оптических изомеров, обладают высоким потенциальным барьером перехода в свои антиподы. Поэтому опасность изомеризации в процессе реагирования относительно невелика. [c.134]

    После того, как расщеплением рацемата или асимметрическим синтезом получено оптически активное вещество, всегда встает вопрос, является ли оно оптически чистым, т. е. состоит только из одного антипода или содержит и примесь другого. Только величины вращения оптически чистых веществ можно сравнивать друг с другом в тех случаях, когда стремятся установить связь между вращательной способностью молекулы и ее химическим строением. Изменения оптической чистоты вещества в ходе реакций могут дать важные сведения о механизме последних. Оценивая физиологическое действие антиподов, правильное соотношение их активности можно получить лишь при работе с оптически чистыми веществами. Наконец, при проведении расщепления просто [c.160]

    Вскоре, однако, выяснилось, что знак вращения — признак неустойчивый. Существуют вещества, меняющие знак вращения в зависимости от условий (растворитель, температура, концентрация), в которых проводится поляриметрическое определение. Так, например, водный раствор природной яблочной кислоты при концентрации 70—50 % имеет правое вращение, при концентрации ниже 25 % — левое. Раствор природной аспарагиновой кислоты в воде при комнатной температуре вращает вправо, а выше 75 "С приобретает левое вращение. Таким образом, конфигурация непосредственно не связана со знаком вращения, последний — только признак единственный в случае пары оптических антиподов, один из признаков при сопоставлении пары диастереомеров ), позволяющий отличить друг от друга пространственные изомеры. Когда это стало ясным, появилась потребность обозначать не просто знак вращения, а конфигурацию оптически активных веществ, т. е. отражать в названии особенности пространственного строения молекулы данного стереоизомера, отличающего именно этот стереоизомер от других. Потребность эта появилась, однако, в то время, когда еще не умели определять абсолютную конфигурацию. [c.295]

    В самом общем виде можно сказать, что конформации — это различные неидентичные пространственные формы молекулы, имеющей определенное строение и определенную конфигурацию [6]. Конформации (конформеры) —это стерео-изомерные структуры, находящиеся в подвижном равновесии, способные к взаимопревращению путем инверсии и выгибания связей, путем вращения вокруг простых связей. Иногда барьер таких превращений становится достаточно высоким для того, чтобы разделить стереоизомерные формы (пример — оптически активные дифенилы). В таких случаях говорят [c.34]


    Все это привело к тому, что изучение особых точек в молекуле (пространственной конфигурации вокруг асим-метрически.х атомов илн двойных связей) уступило место изучению пространственного строения всей молекулы в целом. Потеряло свое исключительное значение и определение оптической активности оно стало лишь одним из многих методов исследования стереохимии вообще. Современная стереохимия обязана своим развитием широкому использованию физико-химических методов исследования. [c.86]

    Напомним, что сравнивая спектральное положение эффектов Коттона (или полос кругового дихроизма) с полосами поглощения имеющихся в молекуле хромофоров, можно сделать выводы, какие именно особенности строения молекулы ответственны за создание оптической активности. [c.674]

    Знание строения молекул — ключ к пониманию явлений переноса, оптической активности, дисперсии и рассеяния света, поглощения упругих и электромагнитных воли, флуоресценции и т. д. [c.114]

    Несимметричность строения молекул органических веществ обычно обусловлена наличием асимметрических углеродных атомов, которые в дальнейшем будут обозначаться звездочкой (С ), и поэтому можно уже по структурной формуле соединения судить, способно ли оно отклонять поляризованный свет. Однако в некоторых случаях, несмотря на отсутствие настоящих асимметрических атомов углерода, пространственное строение молекулы таково, что в ней нет никаких элементов, симметрии (например, соединения типа аллена, метилциклогексилиденуксус-ная кислота, инозит, некоторые производные дифенила). Такие вещества тоже обладают оптической активностью этот факт доказывает, что истинной причиной действия веществ на поляризованный свет является не само по себе наличие углеродного атома, связанного с четырьмя различными группами, а несимметричность всей молекулы, обусловленная некоторыми особенностями пространственного строения. [c.133]

    В таком состоянии могут находиться многие органические соединения в определенном, характерном для каждого из них, температурном интервале. При более низкой температуре вещество —твердый кристалл, при более высокой оно превращается в изотропную жидкость. Характерными признаками жидкокристаллического состояния являются оптическая активность, двулучепреломление, анизотропия упругих модулей, диэлектрической проницаемости и магнитной восприимчивости. Жидкие кристаллы быстро реагируют на температуру, электрическое и магнитное поля, химическую среду, изменяя свою окраску. Такое необычное сочетание их свойств объясняется особенностями строения молекул. [c.248]

    Пространственное строение этих оптически активных молекул можно себе представить таки.м образом, что атом олова в соли метилэтилпропилолова расположен в центре тетраэдра, в четырех верщинах которого находятся заместители в этом случае соотношения были бы такими же, как у соединений углерода. [c.187]

    У соединений второго типа оптическая активность обусловлена диссимметрическим строением самих молекул. Если зеркальное отображение молекулы никакими вращениями и иеремещениями не может быть наложено на оригинал, молекула оптически активна если такое наложение осуществить удается, то молекула оптически неактивна. (Под зеркалом иоршмают отражатель, лежащий вне молекулы, и отражение дает отображеьше всей молекулы). Следует особо подчеркнуть, что необходимо употреблять [c.601]

    Расчеты вращения Уиффена для определення конфигурации и конформации целой молекулы. Правило суперпозиции, успешно примененное Хадсоном для вывода правил изоротации, легло в основу дальнейшей детализации связи строения и оптической активности сахаров. В 1956 г. Уиффен [8] опубликовал метод расчета оптической активности молекул на основании учета стереохимических особенностей всех структурных компонентов молекулы. Такие расчеты и сравнение расчетных данных с найденными опытным путем, естественно, весьма важны для установления конфигурации и конформации моносахарида. [c.77]

    Исследование большого числа веществ привело к заключению, что только те вещества, молекулы которых имеют асимметрическое строение, являются оптически активными (Пастер). Предмет асимметричен тогда, когда при любом вращении он не совпадает со своим зеркальным изображением (или, вернее, когда он не совпадает с другим предметом, соответствующим этому изображению). Геометрическое отношение асимметричного предмета к своему зеркальному изображению тождественно отношению правой руки к левой или отношению двух винтов, из которых один имеет правую нарезку, а другой — левую. Такие асимметричные структуры называются энаншиоморфными. [c.30]

    Прежде всего надо отметить, что сам Кромптон не исключал возможности непосредственного влияния строения на оптическую активность. В связи с этим встает вопрос, играет ли ассоциация действительно определяющую и решающую роль при условии, что два фактора (ассочиа-ция и строение, следовательно, и состав молекулы) влияют на оптическую активность. [c.369]

    Простую поляриметрию заменили методы дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД), которые позволили изучать более полно оптические характеристики оптически активных веществ как функции длины волны излучения. Современные методики ДОВ и КД позволяют определять абсолютную конфигурацию молекул (правда, на полузмпирической основе), химическое строение, конформации и некоторые спектральные характеристики молекул. [c.167]

    При помощи хроматографии удалось выделить фракции нефти, в которых вращение оказалось повышенным до 28°, и показать, что оптически активное вещество имеет сложную полиметилено-вук1 структуру, содержащую от трех до пяти колец в молекуле. Раньше оптически активному компоненту приписывалось строение стероидов, обладающих характерным ультрафиолетовым спектром, однако хроматографическое разделение фракций показало, что вещества стероидной структуры концентрируются во фракциях, не обладающих оптической активностью. Ближайшая природа оптических компонентов и в настоящее время еще не установлена. По-видимому, в нефтях находятся оптически активные вещества, различающиеся деталями структуры, разбросанные по всем высшим фракциям нефти и имеющие, следовательно, раз [ичные молекулярные веса. Возможно, что все они имеют происхождение от одного и того же начального вещества, так как в сложных циклических молекулах содержится иногда несколько ассиметрических атомов углерода и частичное разрушение исходной структуры едва ли может перевести всю молекулу в неактивную форму. [c.17]

    Химические соединения, обладающие способностью отклонять плоскость поляризованного света, могут быть подразделены на две группы. Одна из них включает лищь небольшое число неорганических веществ— кварц, хлорат калия, бромат калия, перйодат натрия и др. Общим для этих веществ является то, что их оптическая активность тесно связана с кристаллическим строением и исчезает при их растворении в жидкости, т. е. при распаде кристаллов на отдельные молекулы. Таким образо.м, способность этих соединений отклонять поляризованный свет обусловлена особым строением не молекул, а кристаллов, и поэтому исследование этого вопроса является задачей кристаллографии. Впрочем, известны и органические соединения, например бензил, которые обнаруживают оптическую активность лишь в кристаллической форме. [c.130]

    Многочисленные подобные опыты всегда приводили к аналогичным результатам. Поэтому йожно считать, что оптическая активность и несимметричное строение молекул являются двумя неразрывно связанными между собой свойствами. [c.133]

    Предпосылкой образования холестерической структуры является особенность строения молекул холестерина. В состав этих молекул входят труднодеформируемые плоские скелеты, состоящие из пятичленных и шестичленных колец. Группы атомов на концах выступают из плоскости. Такая структура не имеет центра симметрии и оптически активна. Поэтому холестерические жидкие кристаллы вращают плоскость поляризации проходящего света. Им, как и смектическим и нематическим жидким кристаллам, свойственно двойное лучепреломление. [c.254]

    Рацемат представляет собой наиболее часто встречающуюся систему, состоящую из й- и /-форм. Это название было предложено Пастером, который впервые наблюдал такое явление на виноградной кислоте ( рацемической кислоте ), состоящей из лево- и правовращающей винных кислот. Рацемические молекулярные соединения, насколько известно в настоящее время, устойчивы только в твердом состоянии. В рас-1воре и в парах они распадаются на отдельные компоненты, как показывают их криоскопические свойства, электропроводность, удельный вес и химическая реакционная способность, всегда тождественные свойствам оптически активных веществ. Поэтому различия между рацематами и оптически активными формами ограничиваются, помимо действия на поляризованный свет и взаимодействия с другими несимметричными системами, теми свойствами, которые наблюдаются лишь у твердых фаз. Так, они могут различаться по температурам плавления, плотности, растворимости их кристаллическая форма также может быть различна, причем кристаллы рацематов, часто обладают голоэдрическим, а активные формы — гемиэдрическим строением. Отклонения наблюдаются также и в содержании кристаллизационной воды рацемическая винная кислота кристаллизуется с одной молекулой НгО, активная — без воды кальциевая соль неактивной маиноновой кислоты безводна, а соль активной формы содержит две молекулы Н2О и т. д. [c.134]

    На другую возможность асимметрических синтезов указывают опыты Шваба и Рудольфа. Они показали, что расщепление рацемического атор-бутилового спирта в присутствии нагретой меди, осажденной на оптически активном кварце, протекает оптически избирательно, т. е. в этих условиях один антипод расщепляется быстрее другого. Таким образом, здесь оптически активная вспомогательная система характеризуется не асимметрией молекулы, а асимметрическим строением кристаллической решетки. Что такая решетка может действовать односторонне направляющим образом, известно еще ил более старых работ Остромысленского, который показал, что при внесении в пересыщенный раствор аспарагина кристаллов гемиэдрически кристаллизующегося гликоколла происходит выделение оптически чистого или соответственно /-аспарагина. [c.139]

    Молекула, одна половина которой обладает ( + )-конфигурацией, а другая, по строению одинаковая с первой, обладает (—)-конфигурацией, должна быть симметричной. Обе ее половины относятся друг к другу как зеркальные, несовместимые друг с другом изображения. Потеря оптической активности, являющаяся у рацематов результато.ч образования симметрично построенного молекулярного соединения из двух асимметрических молекул, в рассматриваемом случае происходит вследствие образования симметричной молекулы из двух асимметрических ее половин. В дальнейшем мы будем часто встречаться с явление.м внутримолекулярной компенсации и рассмотрим его отношение к другим вопросам стереохимии, а также видам пространственной изомерии. [c.140]

    В чем причина появления оптической активности у некоторых органических вешеста Ответ на этот вопрос был дан на основании тетраэдрической теории Я. Вант-Гоффа и Л. Ле-Беля (1874). Согласно этой теории оптической активностью обладают соединения, молекулы которых имеют асимметрическое строение. В состав таких молекул входит асимметрический атом углерода, т. е. атом, у которого все четыре валентности затрачены на соединение с различными атомами или группами атомов (рис. 2.3). Такой атом не имеет ни одного элемента симметрии — ни центров, ни осей, ни плоскости. [c.217]

    Установите строение молекулы 4HnN. Это — жидкость, которая, взаимодействуя с соляной кислотой, образует вещество 4H12N I, а при реакции с азотистой кислотой выделяет пузырьки газа. Исследуемое вещество обладает оптической активностью. [c.98]

    Решающим событием для определения пространственной конфигурации молекулы явилось открытие оптической изомерии. В 1848 г. Пастер разложил винную кислоту на лево-и правовращающие формы. Позже Вислиценус обнаружил различие оптической активности между молочной кислотой брожения и кислотой, выделенной из мяса, хотя порядок взаимодействия атомов, т. е. химическое строение оказалось для них тождественным. В 1874 г. Вант-Гофф и Ле-Бель высказали гипотезу пространственного размещения групп вокруг атома углерода по углам тетраэдра. Ими были рассмотрены возможные модели атома углерода с четырьмя разными заместителями КЬМН. При этом пришлось отвергнуть плоскую и пирамидальную модели, дающие избыточное число изомеров для указанных моделей они должны появиться уже у соединений типа СККММ, что, как известно, не наблюдается. Нельзя сказать, что такая модель вообще невозможна, она реализуется, в частности для комплексов платины Р1С12(ННз)2. Но только тетраэдрическая [c.103]

    Любое вещество, которое вращает плоскость поляризованного света, является оптически активным. Если чистое соединение оптически активно, его молекула е совмещается со своим зеркальным изображением. Если молекула совмещается со своим зеркальным изображением, соединение не вращает плоскость поляризованного света такое соединение оптически неактивно. Свойство объекта не совпадать со своим зеркальным изображением называют хиральностью. Если молекулу нельзя совместить с ее зеркальным изображением, она хиральна, а если можно, она ахиральна. Соотношение между оптической активностью и хиральностью эмпирическое, но тем не менее оно носит абсолютный характер не известно ни одного исключения и найдены многие тысячи примеров, подтверждающих правило (однако см. разд. 4.2). Хиральность (т. е. несовпадение с зеркальным изображением) является обязательным критерием наличия оптической активности это одновременно и необходимое, и достаточное условие [3]. Этот факт был использован в качестве доказательства при определении структуры многих соединений в свое время заключение о тетраэдрическом строении углеродного атома было сделано на основании гипотезы о справедливости упомянутого соотношения. [c.129]

    Два родственных оптических метода — дисперсия оптического враи ения (ДОВ) и круговой дихроизм (КД), отличаются от упоминавшихся выше тем, что используются почти исключительно для стереохимических целей. Так, практически только эти методы (вместе с простой поляриметрией) позволяют отличить друг от друга оптические антиподы, а также вообще оптически активные формы от рацемических. Кривые ДОВ и КД особенно чувствительны к изменениям пространственного строения молекул. Например, УФ-спектры кетонов любого строения имеют практически одинаковый характер — главное в них, это полоса поглощения карбонильного хромофора в области 300 нм. Характер же кривых ДОВ оптически активных кетонов существенно зависит от окружения хромофора — от строения всей молекулы в целом и, прежде всего, от расстояния между хромофором и асимметрическим центром. [c.86]

    В 1815—1817 гг. появились работы Ж. Биопосвященные изучению оптической активности некоторых органических вс-ш еств. Ученый связал эту активность со строением молеку.м изучаемых веществ. Я. Берцелиус в своем обзоре за 1838 г. писал Эти исследования находятся еще в самом начале вероятно, они приведут к результатам большого значения Далее Я. Берцелиус указывал, что химически идентичные веш ества обладают различным вращением плоскости поляризации и что нужны ещ(, кропотливые исследования, чтобы получить надежные результаты и выводы. Н . Био сделал важное наблюдение, что оптическая деятельность органических веществ проявляется как в растворах, так и в парообразном состоянии Отсюда вытекал важный вывод, что способность вращения зависит не от кристаллического строения вещества, т. е. ориентированного расположения частиц, а от дйссимметрии молекул, вызванной различным пространственным расположением в них атомов. [c.213]

    Хлорамфеникол является оптически активным нейтральным соединением в его молекуле содержатся два неионогенных атома хлора, две гидроксильные группы, ацетилируемые уксусным ангидридом в присутствии пиридина, и ароматическая нитрогруппа, восстановление которой приводит к амину, способному диазотироваться и затем сочетаться с аминами и фенолами. При кислотном гидролизе образуется дихлоруксусная кислота и оптически активное основание gHi204Na, которое при нагревании с дихлор-уксуснонатриевой солью превращается в хлорамфеникол. Упомянутое основание реагирует с двумя молекулами перйодата калия, образуя п-нитро-бензальдегид, формальдегид, аммиак, а также муравьиную кислоту. Из этого следует, что основание gHj204N2 содержит и-нитрофенильный радикал и трехуглеродную цепь нормального строения, в которой аминогруппа может находиться только при среднем углеродном атоме, так как иначе и сам хлорамфеникол мог бы реагировать с йодной кислотой, [c.700]

    К. д. наблюдается на кривых дисперсии оптического вращения в виде Коттона эффекта в области полос поглощения оптически активных хромофоров, имеющихся в молекуле. На кривой К. д. имеется экстремум, к-рый в зависимости От соотношения Ел и Ецр м. б. положительным или отрицательным и в случае изолиров. полосы поглощения совпадает с максимумом в УФ спектре, Кривые К. д, использ. для установления хим, строения, конфигурации и конформации хиральных соед., расчета конформац. состава кон-формационно-нодвижных систем. [c.289]


Смотреть страницы где упоминается термин Строение молекул оптически активных: [c.265]    [c.355]    [c.130]    [c.169]    [c.493]    [c.182]    [c.40]    [c.100]    [c.224]   
История стереохимии органических соединений (1966) -- [ c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Активность молекул

Молекула строение

Молекулы активные

Оптическая активность

активное оптически активное



© 2025 chem21.info Реклама на сайте