Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аспарагин, идентификация

    Идентификация мутантного гемоглобина. Препарат мутантного гемоглобина подвергли трипсиновому гидролизу, а затем получили пептидную карту. При этом выяснилось, что мутантный гемоглобин отличается от нормального гемоглобина А тем, что содержит в одном из пептидов вместо остатка аспарагина остаток лизина. [c.225]

    Амиды кислот, часто получаемые в препаративных и аналитических работах для идентификации карбоксильных и нитрильных групп, встречаются также в природе (аспарагин, глутамин, мочевина и т. д.). Амиды кислот могут реагировать в двух таутомерных формах  [c.528]


    Аспарагин дает реакцию с нингидрином на хроматографической бумаге, но его идентификация затруднена в тех случаях, когда рядом с ним расположены аргинин, аспарагиновая кислота, глицин, серии или некоторые другие [c.270]

    Поскольку многие гликопротеины содержат лишь небольшое количество углеводов, для их анализа могут быть использованы протеолитические ферменты (например, проназы) при обработке этими ферментами образуются гликопептиды с небольшим числом аминокислотных остатков, к которым присоединены интактные углеводные звенья. Такие гликопептнды анализируют [188] классическими методами периодатного окисления [189] и метилирования, а также последовательным ферментативным гидролизом (см. разд. 26.3.2.11) для идентификации моносахаридных звеньев, в результате которого получают единственный аминокислотный остаток, связанный с моносахаридным звеном. Установлено, что осуществляются только два типа такой связи 0-гликозидная связь с серином, треонином, гидроксипролином и гидроксилизином, и Л -гликозидная связь с аспарагином. Показано, что в образовании таких связей могут участвовать только пять моносахаридов -арабиноза, D-ксилоза, D-галактоза, 2-ацетамидо-2-дезокси-0-глюкоза и 2-ацетамидо-2-дезокси-0-галактоза. [c.265]

    Система 1 является двухфазной. Верхняя фаза этой системы применяется непосредственно для хроматографии. Нижнюю фазу используют для предварительного насыщения слоя силикагеля на пластине. Для этого пластину со слоем силикагеля оставляют в течение ночи в закрытом сосуде, в который налита нижняя фаза системы 1. Основным приемом для идентификации эфирорастворимых ДНФ-аминокислот является двумерная хроматография в системах 1 и 2 (рис. 13), 1 и 4 (рис. 14), 1 и 5 (рис.15). Валц, Фами и др. [25] улучшили разделение эфирорастворимых ДНФ-аминокислот, заменив систему 1 однофазной системой 1-а толуол—пиридин—этиленхлоргидрин—25 %-й водный аммиак (50 15 35 7), пропуская ее два раза через пластинку. Для разделения ДНФ-производных аспарагина, глутамина, аспарагиновой и глутаминовой кислот использовали двумерную хроматографию в системах 1-а (трехкратно) и 5-а хлороформ—метанол—уксусная [c.310]

    Для выделения аспарагина и отдельных аминокислот был использован метод многослойной восходящей ли круговой хроматограммы. Идентификацию отдельных аминокислот производили нингидринной реакцией на нескольких листах многослойной хроматограммы. По этим проявленным листам устанавливали локализацию аминокислот на необработанных нингидри-ном листах хроматограммы. Участки бумаги с локализованными иа них аминокислотами вырезали, аминокислоты из этих участков выщелачивали дистиллированной водой и подвергали повторной хроматографической очистке. В процессе очистки отдельных амино1 и(Слот происходили з1начительные их потери, поэтому абсолютный выход большинства индивидуальных аминокислот был мал, кроме аспарагина, содержащегося в исходном материале в весьма больших количествасх. Чтобы иметь достаточные количества исследуемого материала, обеспечивающие высокую точность эксперимента, оказалось необходимым выделять отдельно только аспарагин, а все индивидуальные аминокислоты объединить в две группы — дикарбоновые амино- [c.205]


    Методика анализа свободных аминокислот описана Шустером [79]. На колонке, заполненной лихросорбом ЫНг (размер-частиц 5 мкм), используя градиентное элюирование смесью ацетонитрил— фосфатный буферный раствор, он за 30 мин разделил около 20 аминокислот, входящих в состав растворов для внутривенного введения. Обнаружение свободных аминокислот проводилось по их поглощению при 200 нм, а их идентификация — по времени удерживания. Чтобы подтвердить отнесение пиков, спектры поглощения всех выделенных компонентов сравнивались со спектрами чистых препаратов аминокислот. В этой статье, как и в работах, посвященных анализу аминокислот в виде их производных, содержится утверждение, что картина разделения очень сильно зависит от температуры колонки, а также от условий ее эксплуатации. Согласно данным Шустера, снижение эффективности колонки может привести к тому, что аспарагину, глутамину и глицину на хроматограмме будет соответствовать один пик. Авторы работ [54, 80] исследовали влияние различных факторов на время удерживания компонентов смеси и на разрешающую способность колонки более детально. [c.51]

    Методы выделения и идентификации мономеров дают информацию о молекулярной массе олигомера и его субъединиц, их количестве и свойствах, позволяют получать препараты для определения первичной структуры. Если удается получить белок в виде кристаллов, изучение первичной структуры удобно вести параллельно с помощью секвенирования и физических методов (например, рентгеноструктурного анализа), поскольку сопоставление получаемой информации существенно ускоряет ход анализа [158]. Однако такая возможность представляется редко. Часто именно получение достаточно чистых препаратов белка или субъединиц, пригодных для проведения аминокислотного анализа, и составляет одну из главных проблем, поскольку исследуемый белок может присутствовать лишь в незначительных количествах в сложной смеси сопутствующих белков и продуктов их деградации или же исходная смесь может содержать белки с очень близкими свойствами. Если белок плохо растворим и требует более жестких условий для солюбилизации, гетерогенные препараты могут быть получены уже на начальном этапе выделения. Причиной появления гетерогенности можег быть, по-видимому, изменение суммарного заряда из-за дезамидирования амидных групп аспарагина и глутамина, карбами-лирование е-аминогрупп некоторых остатков лизина ионом цианата, присутствующим в растворах мочевины [38], неспецифическая модификация остатков метионина и гистидина при алкилировании цистеина. [c.16]

    Если изменение аллеля в локусе приводит к замене аминокислоты, принадлежащей к одному классу, на аминокислоту другого класса, то изменяется и изоэлектрическая точка белка, и его суммарный заряд при любом данном значении pH. Например, замена в молекуле ДНК кодона ААЦ на кодон ААА приведет к замещению нейтрального аспарагина положительно заряженным лизином. К еще более резкому изменению — замещению положительно заряженного лизина отрицательно заряженной глутаминовой кислотой — приведет замена ААГ на ГАГ. Подобные изменения суммарного заряда можно использовать для разделения белков, а следовательно, и для идентификации аллельных форм одного гена. Такое разделение достигается методом гель-электрофореза. [c.112]


Смотреть страницы где упоминается термин Аспарагин, идентификация: [c.514]    [c.313]    [c.432]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.306 ]




ПОИСК





Смотрите так же термины и статьи:

Аспарагин



© 2024 chem21.info Реклама на сайте