Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Резины регенерат

    Тиурам представляет собой светло-желтый порошок с плотностью 1,4 см и температурой плавления 140—142 "С. Тиурам является ультраускорителем, его критическая температура действия около 105—125 °С поэтому резиновые смеси с тиурамом обладают склонностью к подвулканизации. Применяют тиурам в дозировках от 0,1 до 0,75% от массы каучука, а при вулканизации в горячем воздухе в дозировке 0,3—0,7%. Активируется окисью цинка. Сажа, каолин и регенерат понижают активность тиурама. Вулканизаты отличаются хорошим сопротивлением старению. В дозировке 3—5% тиурам применяют в производстве теплостойких резин особой теплостойкостью отличаются резины, получаемые с тиурамом, без серы. Вулканизация при этом происходит за счет серы, отш,епляемой тиурамом. [c.137]


    Качество битумов характеризуется также их растворимостью в хлороформе, бензоле и др. Чем больше битум содержит растворимых продуктов, тем меньше в нем примесей, ухудшающих его свойства. Важными показателями качества битума являются температура его вспышки, потеря в весе при нагреве и изменение пенетрации после нагрева. Для повышения качества битума (и следовательно, дорожных покрытий) в настоящее время делаются, попытки добавлять к битуму пластифицирующие вещества, повышающие его растяжимость и эластичность при низких температурах и замедляющие процессы его старения. Наибольший интерес представляют тонкоизмельченные отходы резины (регенерат), при добавлении которых к асфальтобетону значительно улучшаются указанные выше свойства. [c.312]

    В настоящее время резиновые отходы (изношенные покрышки, изделия из резины, резинотканевые отходы и др.) используют для производства регенерата и резиновой крошки для изготовления химически стойкой тары, кровельных материалов, а также в дорожных покрытиях. Это дает значительный экономический эффект. Перспективен пиролиз резины для получения углеводородного сырья и технического углерода. Кроме того, некоторые резиновые технические изделия, например конвейерную ленту, подвергают восстановительному ремонту, что обеспечивает экономию дорогостоящих материалов и снижение эксплуатационных затрат. [c.58]

    РЕГЕНЕРАЦИЯ РЕЗИН И СВОЙСТВА РЕГЕНЕРАТОВ [c.368]

    ОБЩИЕ СВЕДЕНИЯ О РЕГЕНЕРАЦИИ РЕЗИН И РЕГЕНЕРАТАХ [c.368]

    Ацетоновый экстракт характеризует количественное содержание мягчителей в регенерате. Хлороформный экстракт показывает степень деструкции вулканизата, достигнутую в процессе девулканизации (продукты деструкции резины растворяются в хлороформе). [c.387]

    Регенерат повышает некоторые технические свойства вулканизатов сопротивление их старению, теплостойкость и сопротивление действию горячей воды и пара, кислот и щелочей. Но в производстве резиновых изделий ответственного назначения регенерат применяют в ограниченном количестве, так как он ухудшает физико-механические показатели резин, понижает предел прочности при растяжении и сопротивление к действию многократных деформаций. В отечественно.м производстве шин потребление регенерата по отношению к потреблению каучука составляет 8—10%. Содержание регенерата в различных резиновых смесях производства резиновых технических изделий колеблется [c.368]

    Основной процесс производства регенерата — процесс девулканизации-обычно осуществляется путем нагревания измельченной резины с мягчителями в течение нескольких часов при температуре 160—190 °С. В процессе девулканизации вулканизованный каучук деструктируется, вследствие этого пространственная структура его частично разрушается. Разрыв пространственной сетки при девулканизации происходит как по месту присоединения серы, так и в основных молекулярных цепях. Пространственная структура вулканизата разрыхляется , то есть уменьшается густота пространственной сетки за счет распада части поперечных связей и некоторой части основных молекулярных цепей, что приводит к образованию растворимой фракции со средним молекулярным весом 6000—12 ООО. Установлено, что каучуковое вещество в регенерате находится в двух различных по строению состояниях в виде массы разрыхленного и набухшего в мягчителе геля (нерастворимая часть) и распределенных в ней частиц золя (растворимая часть)  [c.369]


    В продукте девулканизации, так же ка.к и в мягком вулканизате, большая часть двойных связей остается ненасыщенной, чем и объясняется способность регенерата вулканизоваться. Существует значительная разница в условиях девулканизации резин из натурального каучука и резин из синтетического каучука СКБ или СКС-30. Резина из натурального каучука, содержащая небольшое количество серы, может быть девулканизована путем нагревания без добавки мягчителя. [c.369]

    Старые резиновые изделия, которые подверглись сильному старению, особенно под действием солнечных лучей и атмосферных условий (затвердевшие, хрупкие или осмолившиеся) непригодны для изготовления регенерата. Нерационально подвергать регенерации резиновые изделия, содержащие большое количество текстиля и небольшое количество резины. [c.370]

    Перед переработкой старые резиновые изделия рассортировывают. Покрышки сортируют на несколько групп в зависимости от их размера, с учетом содержания отдельных видов каучука. Рассортировка имеет основной своей целью подбор для переработки сырья, достаточно однородного по степени вулканизации и по физико-механическим свойствам. Из неоднородной резины получается неоднородный по пластичности регенерат. Старая резина, идущая в переработку, не должна иметь загрязнений. [c.371]

    Выбор мягчителей для регенерации резин имеет очень большое значение. Мягчители, применяемые в регенератном производстве, должны обладать следующими свойствами 1) вызывать набухание резины и способствовать развитию процесса ее деструкции 2) иметь высокую температуру кипения 3) не содержать веществ, ускоряющих старение регенерата 4) способствовать образованию прочного и гладкого полотна при обработке на вальцах. [c.371]

    Установлено, что все составные части смолы оказывают влияние на процесс регенерации. Так, смоляные кислоты (канифоль) и прочие высшие кислоты участвуют в процессе сопряженного окисления с вулканизатом, сообщают пластичность и клейкость регенерату, повышают производительность оборудования и улучшают внешний вид регенерата. Нейтральные масла вызывают набухание резины, участвуют в процессе сопряженного окисления с вулканизатом, повышают мягкость, но снижают предел прочности регенерата при растяжении. Фенолы ингибируют окислительный процесс, ухудшают пластические показатели регенерата. Нерастворимые в бензине продукты улучшают обработку девулканизата, снижают пластичность и повышают предел прочности регенерата при растяжении. Воднорастворимые кислоты разрушают остатки текстильного волокна в резине в процессе девулканизации, но в то же время повышение их концентрации свыше 3,5% ухудшает пластические свойства регенерата. [c.372]

    Обработку девулканизата на рафинировочных вальцах производят для придания большей однородности и для очистки регенерата от крупинок недостаточно девулканизованной резины и других включений. Рафинировочные вальцы (рис. 94) имеют большую фрикцию, равную 1 2,54. В отличие от других типов вальцов рафинировочные вальцы имеют нож, расположенный вдоль поверхности валка, служащий для срезания с валка тонкого листа регенерата. Поверхность валков гладкая. Разница в диаметрах валков в середине и по краям составляет 0,08—0,15 мм. Благодаря бочкообразной форме валков эластичные частицы недостаточно девулканизованной резины оттесняются к краям валков и отделяются от общей массы девулканизата в качестве отходов рафинирования. [c.375]

    Термомеханический метод непрерывной регенерации позволяет значительно ускорить производство регенерата и обеспечить существенное повышение производительности и снижение себестоимости регенерата. Сущность метода состоит в пропуске измельченной резины, смешанной с мягчителями, через червячный пресс (червячный девулканизатор) с удлиненным корпусом при температуре 150—210 "С в течение 4—12 мин. Температура внутри девулканизатора изменяется постепенно вдоль червяка по зонам, сначала повышаясь до 190—210 X, затем понижаясь до 140—160 °С. [c.385]

    Нижний (иодстилающий) слой, составляющий около 70% веса всего релина, вырабатывают из дробленой старой резины (регенерат) и нефтяного битума, с небольшим содержанием наполнителей и химикатов. Как правило, красители в пижянй слой не добавляют. Лицевой слой, обладающий повышенной прочностью, изготовляют из синтетического каучука, красителей и химикатов специального назначения. [c.113]

    Нафгоппаст (ТУ 38.101936-83) — масло-мягчитель для резиновой промьшшенности — масляная фракция, выкипающая в номинальных пределах температур 340—410 °С, получаемая путем вакуумной перегонки мазута специально подобранной ярегской нефти нафтенового основания. Применяют в производстве резиновых технических изделий общего назначения, в том числе из наирита, а также в производстве подошвенных резин и регенерата. [c.511]

    Планируется освоить методом диспергирования производство нового высококачественного регенерата (диспор). Использование такого регенерата в резиновых смесях позволит увеличить содержание регенерата в каркасных резинах, а также применить его в протекторных резинах без ухудшения эксплуатационных качеств шин. Применение 1 т регенерата диспор в шинных резинах дает около 500 руб. экономии. [c.16]


    При преждевременной загрузке больших количеств сажи или других порошкообразных ингредиентов, а также когда смесь еще недостаточно разогрелась (например, в начале работы резино-с.месителя), смесь может превратиться в крошку. Для предотвращения ее образования в резиносмеситель вместе с каучуком вводят затравку . Затравкой называют резиновую смесь такого же сосгава, что и рабочая смесь, но не содержащую серы и ускорителей. Ее вводят в количестве 3—5 кг. При введении затравки Б таком количестве нет необходимости изменять содержание серы и ускорителей в рабочей смеси. Затравка имеет более высокую пластичность и клейкость, чем каучук, она связывается с каучуком, предотвращает образование крошки, смешение начинается быстрее и происходит легче. Благоприятное влияние затравка оказывает на изготовление регенератных смесей с больши.м содержанием регенерата, которые также склонны крошиться. [c.270]

    Гл. 30. Общие сведения о регенерации резин и регенератах [c.370]

    Непредельность и наличие циклических соединений в мягчителе способствует термоокислительной деструкции каучука и приводят к получению пластичного регенерата. Циклические и полярные соединения, кроме того, усиливают связь между частицами регенерата, повышают адгезионные свойства мягчителя благодаря этому облегчается обработка регенерата (получение гладкой поверхности листа) и повышается предел прочности при растяжении регенерата. Каучук в резине не являтся чистым углеводородом, он содержит полярные группы. Поэтому полярные группы, содержащиеся в мягчителе, способствуют более [c.371]

    Чаще всего в производстве регенерата в качестве мягчителей применяют сосновую и газогенераторную смолы, которые являются наиболее эффективными мягчителями для регенграции резин. Обычно их применяют в сочетании с мазутом или сланцевым маслом, которые самостоятельно в качестве мягчителей не используются. Для получения светлых регенератов из белых и цветных резин применяют канифоль и минеральные масла (трансформаторное масло и др.). [c.372]

    В зависимости от способа обестканивания и девулканизации резины существуют следующие промышленные методы производства регенерата паровой, водонейтральный и термомеханический. [c.374]

    Девулканизацию дробленой обестканевой резины при водонейтральном методе производят в вертикальных девулканизационных котлах при перемешивании, в среде водной эмульсии мягчителей при избыточном давлении греющего пара в рубашке котла около 12 ат (191 °С). При перемешивании измельченной резины в среде водной эмульсии мягчителя улучшаются условия ее набухания в мягчителях и теплопередача от стенок актоклава, получается более равномерная девулканизация и улучшается качество регенерата. [c.377]

    ИЗ старых покрышек. Производство регенерата по этому методу включает следуюш,ие основные производственные операции 1) подготовку резины, включая операции дробления и механического тканеотделения, 2) подготовку мягчителей, 3) девулканизацию, [c.379]

    Резино-волокнистая смесь готовится из невулканизованных обрезков прорезиненных тканей, получающихся при раскрое деталей, с добавкой, после тщательной обработки на вальцах, регенерата. Переработка обрезков прорезиненной ткани осуществляется путем двухкратной обработки их на дробильных вальцах с рифлеными валками при зазоре 3—4 мм и путем дополнительной обработки на размалывающих вальцах с гладкой поверхностью валков при зазоре 0,7—1,0 мм. К полученной таким обра- [c.595]

    Кислото-щелочестойкая резина (техпластина) ГОСТ 7338— 77 — листовой материал, изготовленный из регенерата и синте- [c.69]

    Как показывают данные табл. 20, аналитическая характеристика смолы довольно устойчива и по основным показателям отвечает требованиям технических условий. Промытая смола, получившая название СВТС (а позднее СТС), была испытана в качестве мягчителя в регенератном производстве. Такой мягчитель в процессе регенерации резины способствует набуханию каучука, благодаря чему увеличивается пластичность материала. Оставаясь в массе регенерата, продукты, составляющие мягчитель, сообщают ему ряд необходимых технологических свойств (Л. 15]. Так, наличие смоляных кислот способствует получению плотного клейкого регенерата с высокими физико-механическими показателями. Не растворимые в бензине продукты, содержащиеся в смоле, обеспечивают получение регенерата с чистой и гладкой поверхностью и повышенными прочностными показателями. [c.132]

    Регенерат — пластичный материал, полученный при деструктивной обработке резины, добавляют в каркасные и камерные резиновые смеси, а также в смеси для ободных лент. В основном в производстве шин используют регенерат, получаемый термомеханическим способом РКЕТ (камерный, из ездовых камер), РКТ (каркасный, из каркасов автопокрышек), РПТ (протекторный, из протекторов автопокрышек). [c.58]


Смотреть страницы где упоминается термин Резины регенерат: [c.424]    [c.466]    [c.137]    [c.337]    [c.378]    [c.581]    [c.124]    [c.466]    [c.15]    [c.658]    [c.130]    [c.370]    [c.375]    [c.596]    [c.500]    [c.161]    [c.252]    [c.226]    [c.404]    [c.59]   
Химический энциклопедический словарь (1983) -- [ c.500 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.500 ]




ПОИСК







© 2025 chem21.info Реклама на сайте