Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осмий простые вещества

    ИРИДИЙ м. 1. 1г (Iridium), химический элемент с порядковым номером 77, включающий 31 известный изотоп с массовыми числами 168-198 (атомная масса природной смеси 192,22) и имеющий типичные степени окисления + III, - - IV, -I- VI. 2.1г, простое вещество, тяжёлый серебристо-белый металл применяется в качестве компонента сплавов с платиной и осмием, для изготовления тиглей, как защитное и коррозионностойкое покрытие, для изготовления слаботочных контактов и др. [c.161]


    Общая характеристика платиноидов. Структуры валентных электронных оболочек платиновых элементов отличаются значительным разнообразием вследствие возможности проскока и5-электронов на (п—1) -орбиталь. В силу малого различия энергий соответствующих орбиталей относительные устойчивости разных электронных конфигураций сравнимы. Легкость взаимных переходов электронов между различными уровнями обеспечивает разнообразие валентных состояний и степеней окисления. Поэтому нередко проскоки -электронов не связаны с достижением стабильной ( -конфигурации, что характерно для элементов подгруппы меди. Нормальное заполнение валентных орбиталей (без проскоков электрона) характерно лишь для осмия и иридия, электронные конфигурации которых аналогичны таковым для железа и кобальта. Палладий — единственный элемент в периодической системе, который в нормальном состоянии не имеет электронов на з-оболочке. У платины стабильна -конфигурация, что также не наблюдается у других элементов периодической системы. Некоторые характеристики элементов и простых веществ семейства платиноидов приведены ниже. [c.416]

    С повышенной прочностью связей металл - металл в простых веществах связана и их повышенная химическая стойкость. К наиболее химически стойким и трудноокисляемым элементам принадлежат благородные металлы - серебро, золото и шесть платиновых металлов (легкие - рутений, родий, палладий и тяжелые -осмий, иридий, платина). Отсюда возникает проблема переведения в раствор благородных металлов часть из них может быть растворена в царской водке. Снижение потенциала окисления при действии царской водки (смесь азотной и соляной кислот) достигается за счет образования растворимых комплексов типа [Au l ] и [Pt lg] , например  [c.369]

    Простые вещества. В виде простых веществ Ре и Ки — серебристобелые металы, Оз — голубовато-белый. металл. Осмий—самый тяжелый из всех металлов, очень твердый и поддается растиранию в порошок. [c.581]

    Простые вещества. В компактном состоянии рутений — серовато-белый, осмий — серебристо-белый металлы с плотнейшей гексагональной структурой, твердые, хрупкие и тугоплавкие. Химически чистый родий имеет вид светло-серого порошка. Сплавленный, он напоминает алюминий. Дисперсный порошок родия черного цвета называется родиевой чернью. При сплавлении родия с цинком и дальнейшей обработке сплава соляной кислотой получают взрывчатый родий. Причиной взрыва является каталитическое свойство родия взрывать смесь адсорбированных газов (водорода и кислорода). Коллоидальный родий, полученный диспергированием чистого металла в воде или восстановлением из растворов его солей, обладает еш,е большими каталитическими свойствами, чем родиевая чернь. Компактный иридий — серебристо-белый металл, подобно родию имеет структуру гранецентрированного куба, очс иь твердый и хрупкий. Платина и палладий — серовато-белые блестящие мягкие металлы. Платина легко прокатывается и вытягивается в проволоку, палладий поддается ковке, обладает большей вязкостью, чем платина. [c.403]


    Физические константы простых веществ железа, рутения и осмия [c.347]

    Простые вещества. В виде простых веществ Ге и Ки — серебристобелые металлы, Оз — голубовато-белый металл. Осмий — самый тяжелый из всех металлов, очень твердый  [c.632]

    Рутений и осмий (как и простые вещества большинства других (1-элементов 5-го и б-го периодов) химически малоактивны. В обычных [c.633]

    Незаконченные фазовые переходы первого рода. Третий тип размытых фазовых переходов отличается от только что рассмотренного тем, что в новой структуре, возникающей в результате фазового перехода первого рода, остаются очаги прежней структуры, но уже в виде не отдельных слоев, а объемных образований поперечником в несколько десятков элементарных ячеек. Еще в [12], стр. 310 мы обратили внимание на обнаруженный в [24] факт застревания структуры а-Со в Р-Со после фазового перехода. Как известно ( 1.20—1.24), плотные упаковки кубическая и гексагональная проявляют большое сходство одинаковы координационные числа (12) и плотности упаковок (74%). Можно было бы полагать, что простые вещества, образующие одну из этих структур, легко переходят в другую. Для некоторых металлов это действительно имеет место (никель, кобальт, кальций, скандий, лантан, церий, празеодим), однако для других не наблюдается. Некоторые образуют только кубическую плотную упаковку (медь, серебро, золото, палладий, платина, родий, иридий). Другие — только гексагональную (рутений, осмий, рений, магний). Те простые вещества, в которых такой переход возможен, свидетельствуют о том, что наряду с линиями высокотемпературной фазы сохраняются в широкой области температур ниже и выше точки фазового перехода элементарные ячейки, объединенные в очаги второй фазы, обнаруживаемые рентгеновским анализом. [c.487]

    Следует отметить, что плотность твердых тел не стоит в такой простой зависимости от массы составляющих атомов, как в случае газов. Плотность твердого тела есть функция массы атомов и их пространственной концентрации, а эта последняя зависит как от расположения атомов относительно друг друга (т. е. от взаимного расположения их центров), так и от расстояний между атомами. Так, хотя атомные веса осмия и свинца очень близки (190,3 и 207,2 соответственно) и атомы их в кристаллическом твердом веществе расположены одинаково (оба кубической плотной упаковки), все же плотность их составляет соответственно 22,5 (Оз) и 11,7 (РЬ). В осмии расстояние между ближайшими соседними атомами равно 2,98 А, а в свинце — [c.137]

    Во всех гетерогенных окислительпо-носстановительных процессах катализаторами служат производные /-элементов. Так, ]]рн синте с аммиака наибольшую каталитическую активность проявляют простые вещества, образованные элементами под-групны железа (рис. 89). В промьппленпости п[)именяют железный катализатор (с добавками активаторов). Применение в промышленных масштабах рутения и осмия ограничивает их высокая стоимость. [c.157]

    Простые вещества (619). 2. Соединения с металлической связью (620). 3. Соединения железа (0), рутения (0) и осмия (0) (621). 4-Соединения железа (II), рутения (II) и осмия (II) (623). 5. Соединения железа (III), рутенЕЯ (III) и осмия (III) (626). 6. Соединения железа (IV), рутения (IV) и осмия (IV) (629). 7. Соеданения железа (VI), рутения (VI) и осмия (VI) (630). 8. Соединения рутения (VIII) и осмия (VIII) (630) [c.670]

    Многие химические элементы названы по цвету простых веществ и соединений сера 8 (от индийского сира — светло-желтый цвет), хлор С1 (от греческого хлорос — зеленый), иод I (от греческого иодес — фиолетовый). Название хром Сг образовано от греческого хрома — окрашенный, из-за разнообразной окраски соединений этого элемента. Есть и другие цветные названия, связанные со спектральной характеристикой элементов (например, таллий, цезий, празеодим и др.). Названия бром Вг и осмий Оз происходят от греческих слов бро-мос и осме, означающих зловоние, запах понятно, что именно обоняние химиков вдохновило их на эти названия. [c.206]

    ОСМИЙ м. 1. Os (Osmium), химический элемент с порядковым номером 76, включающий 33 известных изотопа с массовыми числами 163-167, 169-196 (атомная масса природной смеси 190,2) и имеющий типичные степени окисления в соединениях О, + П, + П1, -Ь IV, + VI, -I- VIII. 2. Os, простое вещество, тяжёлый серебристо-белый металл применяется как компонент сверхтвёрдых и износостойких сплавов с иридием, как компонент катализаторов в реакциях гидрогенизации и др. [c.298]

    Свойства простых веществ и соединений. Из-за того что в триадах семейства платиновых металлов радиусы атомов несколько воярастают (в каждой слева направо), плотность упаковки их кристаллической решетки падает. Соответственно довольно быстро от рутения к палладию и от осмия к платине уменьшаются температуры плавления. Рутений и осмий характеризуются высокой твердостью и хрупкостью. Поэтому их легко превращать в порошок простым растиранием. Наоборот, палладий и платина характери-вуются высокой вязкостью и легко превращаются в тонкую проволоку и фольгу. [c.375]

    Затем изменяются атомные веса урана и тория (они удваиваются) и иттрия (в полтора раза), в связи с чем эти элементы также ставятся на новые места в системе. Начинается перенумеровывание рядов и групп (до группы VII включительно). После этого Менделеев обращает внимание на высший окисел осмия (четырехокись осмия), а позднее — и рутения, видя в них обоснование для выделения группы VIII в системе. Далее он пишет заметку о неполноте системы элементов и подготовляет вывод о существовании большого периода между барием (137) и танталом (182) затем он. составляет таблицу Объемы металлов (точнее сказать — простых веществ), исходя из новых мест для элементов с измененными атомными весами при этом он определяет атомные объемы для трех будущих экаметаллов. [c.273]


    А как обстоит дело с газообразными окислами осмия Здесь неравномерность распределения энергий конденсации не играет роли. И, как показали исследования последних лет, в парах над металлическим осмием в атмосфере кислорода присутствуют, в основном, ОвОа н ОзОз. И это понятно — ведь газообразная ОзОг образуется из простых веществ эндотермически (ДЯ др примерно +65 ккал/моль), а газообразные ОзОз и 0з04 — экзотермически (ДЯ 5р —30 и —80 ккал/моль соответственно). И в газообразном состоянии уже двуокись осмия не выдерживает конкуренции с трехокисью, своим более экзотермическим в данном случае соседом. [c.103]

    Из истории химии известна попытка систематизировать элементы по их отношению к водороду и кислороду. Но и эти системы, говорил Менделеев, представляют также много шаткого, заставляют отрывать члены, несомненно представляющие великое сходство. ДГак, висмут до сих пор не соединен с водородом как сходственным с ним элементом азот, сходный с фосфором, образует чрезвычайно непрочные окислы и в проти-вопсложность фосфору не окисляется прямо. Иод и фтор ясно различаются между собой первый соединяется с кислородом весьма легко, с водородом же — с большим трудом, а второй не соединен до сих пор с кислородом, с водородом же образует очень прочное вещество. Магний, цинк и кадмий, составляющие столь естественную группу простых тел, относятся по этой системе к разным группам, так же как медь и серебро. Таллий, поэтому, оторвался от сходственных с ним щелочных металлов, свинец от сходственных с ним — бария, стронция и кальция даже самые естественные группы простых тел — палладий, годий и рутений, с одной стороны, и осмий, иридий, платина, с другой,— должны быть в этом отношении поставлены далеко друг от друга. [c.267]

    ОНИ представляют близкие атомные веса, а именно, сколько то известно, вероятно не совсем точно, най церия равен 92, най лантана 90 (по другим 94), най дидимия равен 95. Несомненно, что паи их близки йюжду собою, и мы увидим впоследствии еще несколько других примеров этого же рода. Таковы никкель и кобальт и их паи чрезвычайно близки родий, рутений и палладий, с одной стороны, иридий, осмий и платина, с другой стороны, представляют также элементы, значительно сходные между собою и имеющие очень близкие атомные веса. Железо и марганец по свойствам близки друг к другу, и паи их также весьма близки. Из этого можно заключить, что в ряду элементов есть два класса, сходственных между собою в одном классе элементов сходственные вещества представляют постепенное увеличение в атомном весе, сообразно с постепенным изменением в характере и в свойствах соединений. Пример этому мы знаем уже в галоидах, щелочных Металлах, в металлах щелочных земель и будем видеть еще над многими другими простыми телами. Другой разряд сходственных элементов характеризуется тем, что при том большом сходстве, какое здесь существует, нет различия или, правильнее сказать, нет значительного различия в величине атомного веса сходственных элементов. Причина различия в первом разряде сходственных элементов весьма понятна из значительной разности в весе атомов сходных элементов, но для металлов второго разряда причина замечаемого различия не лежит уже в величине и в весе атома, а, конечно, в других внутренних различиях материи, входящей в состав атомов таких сходственных элементов, подобно тому различию, какое замечается между изомер [194]ными сложными телами. Между последними известна изомерия нескольких родов один вид такой изомерии, называемый полимерностью, весьма легко понимается, потому что вес частицы полимерных тел не одинаков. Мы видели пример этому в углеродистых водородах, гомологических этилену, но есть другой род изомерия, называемый метамерностию. Метамерные тела имеют один и тот же вес частицы, но между тем в них распределение частей или атомов внутри частицы, несомненно, неодинаково, потому что их реакцйи различны и оНи распадаются при одинаковом влиянии [c.294]

    Рутений и осмий (как и просты.е вещества большинства других -элементов V и VI периодов) химически малоактивны. В обычных условиях на компактные металлы не действуют даже наиболее активные неметаллы. Но мелкораздробленный Оз постепенно окисляется кислородом и концентрированной НЫОд до ОзО-,. Рутений медленно окисляется кислородом лишь выше 450° С, давая нелетучий КиОг. [c.595]


Смотреть страницы где упоминается термин Осмий простые вещества: [c.583]    [c.194]    [c.620]    [c.369]    [c.583]    [c.511]    [c.257]    [c.280]   
Неорганическая химия (1969) -- [ c.593 ]




ПОИСК





Смотрите так же термины и статьи:

Вещества простые

Осмий

Осмий осмий



© 2024 chem21.info Реклама на сайте