Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Новой фазы структура

    На процесс м1щеллообразования в водных растворах существенно влияет структура воды, которая способствует выталкиванию углеводородных радикалов из раствора одновременно частично разрущается структура воды. Благодаря дифильному строению молекул ПАВ углеводородные радикалы, взаимодействующие между собой в мицеллах, экранируются полярными гидрофильными группами. Поэтому происходит самопроизвольное мицеллообразование с минимальным поверхностным натяжением на границе раздела мицелла—вода, сопровождающееся умень-и]ением энергии Гиббса системы. Эффектом экранирования объясняется уменьщение энтальпии в процессе мицеллообразования. Взаимодействие отдельных частей молекулы ПАВ в молекулярном растворе с растворителем характеризуется различным изменением энтальпии лиофильная часть взаимодействует с выделением теплоты, лиофобная — с поглощением теплоты. Именно поэтому энтальпия растворения ПАВ имеет небольшие положительные илн отрицательные значения (чаще всего для водных растворов она положительна). В мицеллярном растворе экранирование лнофоб-ных групп приводит к уменьшению поглощения теплоты, т. е. н снижению энтальпии системы по отношению к энтальпии образования истинного раствора. Так как мицеллообразование является процессом возникновения новой фазы, то его можно сравнить с расслоением системы, т. е. с процессом ее упорядочения. Для таких процессов характерно уменьшение энтропии. Таким образом, самопроизвольное мицеллообразование по сравнению с образованием молекулярного раствора обусловлено уменьшением энтальпии [см. уравнение (УГ25)]. [c.297]


    Новая фаза (структура не установлена) [c.106]

    Различие степени пересыщения может влиять на направление процесса и на вид получаемых конечных продуктов. Так как наиболее устойчивая кристаллическая форма всегда обладает наименьшей растворимостью, то при повышении концентрации раствора прежде всего достигается состояние насыщения (затем пересыщения) именно в отношении этой формы. При дальнейшем повышении концентрации раствор вместе с тем может достигнуть насыщения (и пересыщения) и по отношению к более активным формам. В этих условиях легче могут образовываться кристаллы с различными дефектами структуры или становится возможным образование одной из метастабильных форм или начинается возникновение зародышей новой фазы (или новых фаз). В последнем случае, при возможности выделения вещества в двух кристаллических формах, преобладание той или другой из них в конечном продукте определяется соотношением скоростей процессов, а не термодинамической устойчивости этих форм. [c.361]

    В отдельных случаях, когда коагуляция частиц дисперсной фазы приводит к образованию сплошного пространственного структурного каркаса, охватывающего весь объем дисперсной системы, следует обратить особое внимание на понятие фазовой устойчивости, которая считается результатом потери системой агрегативной устойчивости. В этих случаях образуются конденсационные структуры с фазовыми контактами, являющиеся результатом срастания частиц с образованием качественно новой фазы. Подобные необратимые структуры отличаются повышенной прочностью и хрупкостью. Ярким примером рассматриваемого процесса является коксование, когда жидкая коксующаяся масса переходит в твердую пену — кокс, [c.24]

    Чтобы час гицы новой фазы могли участвовать в хаотическом тепло-ром движении, необходима их седиментационная устойчивость, т.е. низкая скорость оседания частиц на дно сосуда. Фрактальные кластеры обладают гораздо большей седиментационной устойчивостью по сравнению с плотными трехмерными кластерами в силу своей рыхлой структуры и, следовательно, меньшей плотности [12], Так, явление массового выпадения асфальтенов из раствора происходит в результате внутренней перестройки асфальтеновых кластеров и увеличения их фрактальной размерности. [c.7]

    В основе полиморфных превращений железа лежит процесс кристаллизации они протекают через стадию образования и роста зародышей новой фазы с последующим формированием вокруг них кристаллов иной структуры. Ввиду узости температурных интервалов переходов а-железа в р-железо (142 С) и [c.39]


    При рассмотрении асфальтенового ассоциата с точки зрения модели ССЕ во внимание принимается вся совокупность компонентов нефтяного пека. Когда же рассматривается процесс образования фрактальных кластеров в основном выделяются компоненты системы, обладающие сильными взаимодействиями, которые именно по этой причине первыми начинают образовывать новую фазу. Это могут быть парамагнитные соединения (асфальтены, карбены, карбоиды), а точ 1ее их Парамагнитные центры (ПМЦ). Таким образом, возникает модель взаимопроникающих и неразрывно связанных между собой структур (рис. 1.14). [c.39]

    Подробное изучение процессов зарождения и развития новой фазы в рамках теории регулируемых фазовых переходов проводится в основном для стадии переработки нефтяного сырья, несмотря на то что задолго до этого последние уже неоднократно подвергаются различным неконтролируемым воздействиям. В этой связи представляет несомненный интерес приложение принципов теории регулируемых фазовых переходов к нефтяному сырью на стадиях добычи и транспорта. Формирование на этой базе единого мировоззрения на структуру нефтяного сырья позволяет связать технологию переработки нефти и газа и нефтепромысловое дело, что в свою очередь обусловливает возможность единовременного целенаправленного воздействия на нефтяную систему непосредственно на месторождении, улучшая тем самым транспортабельные характеристики потоков и оказывая положительное влияние на их дальнейшую переработку. [c.10]

    Таким образом, стеклообразное состояние является неким - заморожен-ным , кинетически стабильным, но термодинамически неравновесным состоянием, а не новой фазой, отличной от жидкой. Наблюдаемые температурные кривые различных температурных коэффициентов (рис. 11.7) вполне объяснимы с молекулярно-кинетической точки зрения [39, с. 27 40, с. 24 42, с. 69—73]. Так, в стеклообразном состоянии поглощаемая при повышении температуры теплота идет только на увеличение интенсивности колебаний частиц, и теплоемкость определяется колебательными степенями свободы. В структурно-жидком состоянии, к которому относятся и высокоэластическое, и вязкотекучее деформационные состояния, при нагревании затрачивается добавочная теплота, идущая на увеличение внутренней энергии при переходе от низкотемпературной плотной к высокотемпературной рыхлой структуре. Вследствие этого теплоемкость полимерного стекла меньше теплоемкости полимера в структурно-жидком состоянии. Поэтому на температурной кривой теплоемкости при переходе от жидкости к стеклу наблюдается падение теплоемкости (кривая I, рис. П. 7). Тепловое расширение стекла в твердом состоянии происходит только аа счет увеличения ангармоничности колебаний. Но в структурно-жидком состоянии объем при нагревании дополнительно уве- [c.88]

    В дифракционном структурном анализе принято разделять всевозможные искажения кристаллической структуры на две группы искажений динамические и статические. Искажения правильной периодической структуры, обусловленные тепловыми колебаниями атомов, называют динамическими, а искажения, связанные со статическими смещениями атомов из узлов средней решетки (нанример, нри образовании твердых растворов, выделении новых фаз, образовании дислокаций и т. п.) называют статическими. [c.99]

    В качестве примера кристаллизационных структур дисперсных систем, возникающих как новые фазы в результате переохлаждения и пересыщения расплавов, можно назвать металлы и сплавы. В твердом состоянии все металлы и сплавы имеют кристаллическое строение. Переход из жидкого расплава в твердое состояние при охлаждении начинается с возникновения зародышей атомы металла ориентируются определенным образом в пространстве, образуя кристаллическую решетку зародыша. В сплавах компоненты могут сокристаллизоваться, а химические соединения между ними образуют свою кристаллическую решетку. В качестве центров кристаллизации могут выступать не только возникающие зародыши из самого металла, но и мельчайшие шлаковые и неметаллические включения. Рост числа и размеров кристалликов приводит к их срастанию и образованию поликристаллической структуры. Так как процесс кристаллизации развивается одвовременно из многих [c.386]

    Понижение температуры может доходить до нескольких сотен градусов. Появление новой полиморфной модификации устанавливается, как указано выше, по излому на кривой сила сдвига — давление, ибо каждое вещество обладает своим специфическим значением сопротивле-ния сдвиговой деформации. Такие явления в каждом конкретном случае связаны либо с влиянием созданных условий на равновесие, так как стабильности различных фаз одного и того же вещества при гидростатических и негидростатических давлениях различны (в негидростатических условиях давление неодинаково в разных областях объема вещества), либо с влиянием этих же условий на скорость превращения, или с тем и другим вместе. Естественно, что в твердых веществах перестройка атомов при образовании новой кристаллической структуры в той или иной степени затруднена сдвиговое же усилие будет способствовать такой перестройке, и поэтому скорость превращения при ВД+ДС увеличится. [c.221]


    При высокой степени пересыщения образуется большое число зародышей новой фазы. В результате вещество выделяется в виде большого числа мелких частиц, т. е. обладает сильно развитой общей поверхностью, характерной для коллоидных систем. Если среда не способствует стабилизации мелких частиц, то наиболее мелкие из них (так как характеризуются большей растворимостью, чем крупные) растворяются с образова нием пересыщенного по отношению к крупным кристаллам раствора. В результате последние будут расти за счет растворения мелких кристаллов. Подобный процесс укрупнения осадка часто наблюдается в разных системах. Если же высокодисперсное состояние частиц стабилизируется, например, путем адсорбции на поверхности их соответствующих ионов или образованием на них более или менее прочно связываемой гидратной (сольватной) оболочки, то коллоидная система может сохраняться во времени и укрупнение частиц происходит достаточно медленно. Следует подчеркнуть, что коллоидное состояние такой системы не зависит от аморфной или кристаллической структуры самих частиц. [c.21]

    Уменьшение активности катализатора иногда связывают с образованием новой фазы в результате концентрации промотирующих добавок в зерне катализатора при повышенных температурах очевидно, что при этом изменяется химический состав зерна и структура работающей поверхности. [c.106]

    Согласно механо-химическсж гипотезе, трение -рассматривается как процесс образовани / и разрушения вторичных структур, которые представляют собой новую фазу (тонкопленочный объект), спонтанно образующуюся при трении в, peзyльтaJ те взаимодействия поверхностных слоев металла со смазочной средой. Различают два типа вторичных структур первый тип, [c.248]

    Конденсационная структура может быть получена и при нон-денсагтии дисперсной фазы из пересыщенных паров, растворов или расплавов. При обра.човании и росте зародышей новой фазы из концентрированных пересыщенных систем может возникнуть непрерывный сетчатый каркас путем срастания и переплетения растущих частиц дисперсной фазы. Если эти частины представляют собой кристаллы, возникающие структуры называют кристаллизационно-конденсационными структурами тБсрдепия. [c.340]

    Процесс сварки труб из центробежнолитых трубных заготовок отличается рядом особенностей вследствие специфических свойств аустенитных хромоникелевых сталей. Аустенитная сталь типа НК-40 характеризуется электрическим сопротивлением, примерно в 5 раз большим, чем обычных углеродистых сталей, и низкой теплопроводностью металла, что определяет выбор методов и режимов сварки. Химический состав хромоиикелевых сталей также оказывает влияние на происходящие металлургические процессы сварки. Высокое содержание хрома в сплаве делает его взаимодействие с кислородом и рядом оксидов (МпО п 5102) достаточно активным, что вызывает интенсивные марган-цево-кремневосстановительные процессы, сопровождающиеся окислением значительных количеств хрома. Другие элементы, входящие в жаропрочный сплав (Ре, N1, Мп, 51, 5, Р, N и др.), при сварке могут образовывать различные эвтектики, карбиды, нитриды, интерметаллиды. Образование в металле новых фаз вызывает появление структурных напряжений, особенно металлов центробежнолитых трубных заготовок с характерной анизотропной дендритной структурой. Наконец, при сварке в результате воздействия высоких температур происходит укрупнение зерен в структуре металла и его разупрочнение при комнатной температуре, что ухудшает эксплуатационные свойства труб. [c.33]

    Другие исследователи [143, 144] предполагают, что пористая структура изменяется в результате химических процессов, приводящих к образованию новых фаз и разрушению внутренней пористой структуры. Катализаторы, имеющие высокие отношения K2O/V2O5, проявляли большую термостойкость, хотя часть калия связывалась в нерастворимую в воде соль независимо от соотношения промоторов, [c.266]

    Модифицирование никель-алюминиевого сплава незначительными добавками других металлов приводит к образованию новых фаз и, следовательно, к изменению структуры и свойств катализаторов. Характер этих изменений зависит от природы и количества промотора. Так, иапример, изучение никель-алюминиевых сплавов, содержащих Мо, Сг, У, показывает, что в них кроме Ni2Alз, [c.35]

    В результате взаимодействия вяжущего с водой образуются новые фазы, причем объем новой фазы меньше суммарного объема вяжущего и воды за счет перехода части воды в химически связанное состояние и изменения своей плотности, т. е. наблюдается контракция. Возникший дефект объема обусловливает появление вакуума в структуре твердеющего раствора, что, в свою очередь, приводит к всасыванию контактирующего с цементным камнем флюида. При наличии в пластовом флюиде агрессивных компонентов они начинают разрушать цементный камень, начиная с самых ранних стадий твердения, когда его структура еще не успела упрочниться. [c.57]

    В фазовых контактах сцепление частиц обусловлено близкодействующими силами и осуществляется по крайней мере 10-... 10 межатомными связями вследствие увеличения площади контакта по сравнению с атомным [174]. В зависимости от дисперсности и средней прочности отдельного контакта прочность структуры составляет 10. .. 10 Н/м и более. Образование фазовых контактов можно рассматривать как процесс частичной коалесценции [174] твердых частиц из-за увеличения площади непосредственного контакта между ними с переходом от "трчечного" соприкосновения к когезионному взаимодействию на значитеяы ой площади. Такой переход может осуществляться постепенно, например вследствие диффузионного переноса вещества в контактную зону при спекании. Чаще он происходит скачкообразно, как правило, в тех случаях, кс гда возникновение фазового контакта связано с необходимостью преодоле1 ия энергетического барьера, определяемого работой образования устойчивого в данных условиях зародыша - контакта - первичного мостика между частицами. Возникновение и развитие его могут быть результатом совместной пластической деформации частиц в местах их соприкосновения под действием механических напряжений, превышающих предел текучести материала частиц. Зародыш-контакт может образоваться и при вьщелении вещества новой фазы из ме-тастабильных растворов в контактной зоне между кристалликами - новообразованиями срастание кристалликов ведет при этом к формированию высокодисперсных поликристаллических агрегатов [174,193]. [c.106]

    Если при протекании реакции в решетку металла внедряются атомы других элементов, имеющие небольшие размеры, происходит образование твердых растворов внедрения, сопровождающееся лишь незначительными изменениями исходной структуры (рис. В.11,2). Особенно часто такие фазы образуют /-элементы IV, V и VI групп, атомы которых достаточно велики, чтобы в октаэдрических или тетраэдрических пустотах решетки металла могли поместиться атомы меньших размеров, например углерода или азота. По типу твердых растворов внедрения построены карбиды (Zr , ТаС, W2 ) и нитриды (ZrN, Nb2N, U2N3), которые получаются при нагревании порошкообразных металлов в атмосфере паров углеводородов, N2 или NH3. Эти фазы также не являются дальтонидами. Например, в фазе V2 o,74-i,o атомы углерода могут занимать —V2 всех октаэдрических пустот при большем содержании углерода образуется новая фаза. Хотя в этих фазах присутствуют атомы неметаллов, металлический тип связи сохраняется. Подобные соединения обладают металлической электропроводностью, отличаются чрезвычайно высокой твердостью и инертностью. Из всех [c.362]

    При реакциях между твердыми веществами наряду с процессами, протекающими на поверхности раздела фаз, и процессами образования зародышей кристаллов при образовании новой фазы большое значение имеют также процессы переноса в кристаллах. Для ускорения относительно медленной объемной диффузии необходим подвод тепловой энергии. Поэтому все реакции между твердыми веществами, как правило, проводятся при повышенных температурах. П(зскольку химическая активность твердых веществ в значительной мере определяется их структурой и величиной поверхности, исходные вещества перед проведением реакции размалывают в тонкий порошок или измельчают каким-либо иным способом, т. е. переводят вещества в состояние с сильно развитой поверхностью. Тем самым осуществляется активация за счет механической энергии (разд. 33.9.2.6). Для проведения реакций между твердыми соединениями чаще всего используют смеси порошков или прессованные таблетки. Для установления равновесия обычно требуется постепенное нагревание до довольна высокой температуры. Для исследования конечных продуктов и кинетических измерений особенно удобны структурно-аналитические и физические методы анализа. При определении механизмов реакции было установлено, что в некоторых твердофазных реакциях перенос компонентов реакции происходит через газовую фазу. [c.437]

    Конденсацнонно-кристадлизационные структуры. К этому типу принадлежат структуры, у которых срязи между частицами образованы за счет химических сил. Эти структуры возникают либо в результате образования прочных химических связей между частицами (конденсационные структуры), либо вследствие сращивания кристалликов в процессе выкристаллизовывания новой фазы (кристаллизационные структуры). [c.321]

    С помощью электронографического анализа можно в принципе решать те же задачи, что и рентгенографическим анализом исследование кристаллической структуры, проведение фазового анализа, определение межплоскостных расстояний и периодов решетки, определение текстуры и ориентировки кристаллов и т. д. Однако особенности волновых свойств пучка электронов обусловливают и определенную специфику их использования, а также преимущества и недостатки по сравнению с рентгенографическим методом исследования кристаллов. Преимущество электронограмм заключается прежде всего в том, что в связи с малой длиной волны и сильным взаимодействием электронов с веществом этим методом можно получить резкие и интенсивные рефлексы при меньших размерах кристаллов и-меньшем количестве вещества, чем при рентгенографическом анализе, В рентгенографии, например, расширение линий начинается при р.эзмере частиц 500—900 А, а в электронографии оно становится заметным лишь при размерах 20—30 А. Интенсивность электронного луча гораздо больше, а необходимая экспозиция гораздо меньше, чем рентгеновских лучей, что дает существенные методические преимущества. Интенсивность отражений при дифракции электронов обычно настолько велика, что позволяет визуально на флюоресцирующем экране наблюдать дифракционную картину. Указанные особенности электронографии делают ее особенно ценной, например, при исследовании зародышей новых фаз. Электронография может использоваться также при изучении положений легких атомов в кристаллической решетке, хотя для этого более пригодна нейтронография, [c.105]

    В сырьевом шламе установлено наличие двух видов коагуляционных структур. Первичная структура образуется коллоидной фракцией глинистых компонентов, вторичная — путем взаимодействия диффузных структурных оболочек. Образование коагуляционных структур не связано с появлением новой фазы такие структуры являются как бы равновесными. Они возникают под действием ван-дер-ваальсовых сил сцепления коллоидных частиц, участвующих в интенсивном броуновском движении, и более крупных частиц, находящихся в шламе. [c.276]


Смотреть страницы где упоминается термин Новой фазы структура: [c.792]    [c.269]    [c.170]    [c.93]    [c.132]    [c.138]    [c.42]    [c.76]    [c.17]    [c.37]    [c.155]    [c.166]    [c.91]    [c.222]    [c.231]    [c.68]    [c.215]    [c.153]    [c.73]    [c.97]    [c.128]   
Кинетика образования новой фазы (1986) -- [ c.190 ]




ПОИСК







© 2025 chem21.info Реклама на сайте