Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цветные реакции и другие методы

    Полученные гидролизаты анализируют различными методами гель-хроматографией, ионообменной хроматографией, электрофорезом и хроматографией на бумаге и в тонком слое, электрофорезом в полиакриламидном геле, методом пептидных карт на бумаге или в тонком слое (в одном направлении пептиды подвергаются электрофорезу, в другом — хроматографии) и др. При этом пептиды, содержащие остат ки аргинина, триптофана и гистидина, могут быть открыты с помощью специфических цветных реакций (с. 129). Выбор метода диктуется величиной (молекулярной массой) и характером пептидов гидролизата. [c.139]


    Предполагается, что подобный хиноидный ион образуется в растворе, получающемся при добавлении щелочи к фенилгидразону ароматического нитроальдегида [85], Эта цветная реакция явилась основой чрезвычайно чувствительного метода анализа кетостерои-дов в биологических вытяжках [86]. Ниже описано применение этого метода для количественного определения следов альдегидов или кетонов в воде и органических растворителях. Метод наиболее удобен для анализа карбонильных соединений в интервале концентраций от до 10 моль/л, при котором другие методы не дают удовлетворительных результатов или неприменимы. [c.122]

    Аналогия в химико-аналитических свойствах элементов, занимающих соседние клетки в периодической системе, открывает широкие возможности для прогнозирования и разработки новых методов анализа. Было известно, например, что Мо (V) дает цветную реакцию с тиоцианатом. Можно было ожидать, что N6 (V), как соседний элемент по периодической системе, также будет давать соединение с тиоцианатом. Эксперимент оправдал эти ожидания и для ниобия был также разработан тиоцианатный метод фотометрического определения, широко используемый в настоящее время. Аналогичные примеры известны для методов определения тантала и протактиния и для многих других сочетаний элементов. Аналогия свойств, соответствующая периодическому закону, проявляется не только непосредственно в химических реакциях кислотно-основного взаимодействия, комплексообразования, осаждения и т.д., но и во многих других процессах, имеющих химико-аналитическое значение, — их экстрагируемо- [c.15]

    Многочисленные опыты, проделанные с естественными нефтяными продуктами, не подвергавшимися окислению и предварительно подвергнутыми окислению, а также с нефтяными продуктами, содержащими минимальные количества искусственно введенных высших альдегидов (энантового, октадецилового, гидрокоричного и др.), показали, что наиболее удобным и надежным методом обнаружения альдегидов в отработанных маслах и других как светлых, так и темных нефтепродуктах следует считать цветную реакцию с реактивом Шиффа [2], который можно готовить обычным методом [3], обесцвечивая 0,1%-ный раствор парафуксина сернистым газом. [c.212]

    Для обнаружения уроновых кислот используют хроматографические и электрофоретические методы На электрофореграммах в щелочной среде уроновые кислоты идут к аноду, что позволяет отличать их от всех других моносахаридов. Имеется ряд количественных методов определения содержания уроновых кислот в смеси. Одни из них основаны на измерении количества двуокиси углерода, выделяющейся при нагревании с сильными кислотами, в других используются цветные реакции уроновых кислот с карбазолом нафторезорцином или о-аминофе-нолом . [c.309]


    Наряду со спектрофотометрическими методами в концентрационном анализе широко применяются колориметрические методы. Многие соединения, обладающие незначительным поглощением, после реакции с другими веществами дают окрашенные продукты, количество которых пропорционально количеству исходного вещества. В биохимии такие цветные реакции используют для обнаружения вещества в [c.7]

    Известны разнообразные другие цветные реакции с пирогалловой кислотой, трихлоруксусной кислотой, сахарозой, дихлоргидрином глицерина (зеленая окраска с Хмакс 625 нм), ароматическими альдегидами и др. они предложены для качественного и количественного определения витамина В в витаминных концентратах и пищевых продуктах [68]. Описан метод количественного определения витаминов Ог н Од хроматографией на бумаге с применением в качестве подвижной фазы петролейного эфира, насыщенного водой [69]. [c.104]

    Попытка проанализировать сложные смеси, например, растительных экстрактов, сопряжена с трудностями, обусловленными различными пропорциями присутствующих компонентов. Так, в работе [3] точно установлено, что публикуемые значения для индивидуальных веществ могут иногда вводить в заблуждение. Некоторые вещества в смеси дают большие значения / /, чем значения Rf, полученные для эквивалентных количеств того же индивидуального вещества, другие дают меньшие величины /. Изменение в количестве вещества, наносимого на пластинку, может также вызывать обращение относительных положений веществ. Поэтому для получения удовлетворительных результатов в количественной хроматографии в тонком слое необходимо подтверждать идентичность определяемых веществ с помощью цветных реакций или методом ультрафиолетовой спектрофотометрии. [c.56]

    Одним из эффективных методов разделения веществ в неорганической технологии является экстракция компонентов из водных солевых систем органическими растворителями. Этот метод позволяет, например, извлекать рассеянные и редкие элементы, а также цветные и другие металлы из растворов, полученных в результате кислотного разложения природных руд получать концентрированные кислоты из разбавленных растворов без их выпаривания смещать реакции обменного разложения в сторону образования требуемых кислот и солей осуществлять реакции, не идущие в водных системах производить кристаллизацию солей из водных растворов, экстрагируя из них воду и др. [c.315]

    Между тем исследование разнолигандных комплексов привело к разработке прямых методов определения фтора с ализаринкомплексоном, арсеназоИ и другими реактивами. Таким образои(г, одним из перспективных направлений разработки фотометрических методов определения неметаллов, для которых нет цветных реакций, является исследование окрашенных разнолигандных комплексов с участием этих ионов. [c.300]

    Проявление соответствующих областей осуществляется радиометрически или путем цветных реакций со специфическими реагентами. Количественное определение элемента может быть проведено также любым другим высокочувствительным методом после извлечения его из занимаемой зоны. [c.377]

    Для урана такими реакциями являются прежде всего цветные с неорганическими и органическими реагентами и люминесцентные. В отсутствие прочих радиоактивных элементов уран может быть быстро определен по радиоактивности [72, 225, 635, 655]. Ультрамалые количества урана можно определить методом микрорадиографии по количеству распадов, фиксируемых специальными толстослойными фотопластинками 435, 807, 808]. Реже для обнаружения урана используют некоторые другие методы полярографические [944], спектральные [167,442], метод нейтронного активационного анализа [724, 924]. Эти достаточно сложные инструментальные методы в основном применяются для количественного определения урана. Они подробно описываются в соответствующих разделах книги. [c.34]

    Для качественного обнаружения рения используются химические, физико-химические и физические методы. Среди химических методов применяется ряд реакций, выполняемых сухим путем. Для обнаружения и идентификации могут быть полезны цветные реакции с некоторыми органическими и неорганическими лигандами в водных и неводных средах, каталитические реакции, некоторые микрохимические реакции, основанные на образовании малорастворимых соедипепий. Однако многие химические методы обнаружения рения, как и большинства других элементов, мало специфичны. Поэтому в ряде случаев используются физико-химические и физические методы. Так, открытие следов репия может быть проведено полярографическим методом по каталитическим токам (до 10 М), радиоактивационным методом по характерным периоду полураспада и энергии у-излучения изотопов рения (до 10" %), спектральным (до 10" —10 %), рентгеноспектральным (до 5-10 г) и масс-спектрометрическим ( < 10" %) методами ио характерным аналитическим линиям. [c.68]


    Метра и его сотрудники [1282] определяли примесь изопропилового спирта в различных других спиртах с помощью метода, основанного на окислении пропанола-2 стандартной бромной водой в ацетон. Количество образующегося ацетона оценивали с помощью специфической цветной реакции с нитропруссидом, которую проводили после того, как образовавшиеся в процессе окисления альдегиды были разрушены карбонатом натрия и перекисью водорода. Спирт, не содержащий изопропилового спирта, дает бледно-желтую окраску, тогда как в тех же условиях спирт, содержащий 0,01% пропанола-2, дает красно-фиолетовое окрашивание. Этим методом можно установить наличие одной части пропанола-2 в 10 млн. частей спирта. (См. также работу Орчина [1400].) [c.317]

    До недавнего времени обоснованные претензии предъявлялись к воспроизводимости и надежности фотометрических методов определения редких и других, преимущественно тяжелых элементов, таких, например, как Ti, Zr, Hf, Nb, Та, Se. В первую очередь это связано с легкостью гидролиза соответствующих ионов, с образованием полимерных цепочечных структур в недостаточно кислых растворах, в которых обычно развиваются соответствующие цветные реакции. Между тем, как правило, цветная реакция возникает только при взаимодействии применяемого органического [c.124]

    Следовые количества серебра и некоторых других металлов можно концентрировать, используя в качестве коллектора окси-целлюлозу. Анализируемый раствор взбалтывают с этим коллектором, причем поглощается до 10 мкг серебра. Серебро затем можно обнаружить обычными цветными реакциями [1441]. Если добавить раствор, содержащий серебро, к щелочной суспензии Се(ОН)з, то она становится коричневой или черной. На этой основе предложен следующий метод обнаружения серебра [650]. [c.57]

    Возникновение и бурное развитие метода хроматографии сахаров на бумаге повлекло за собой появление способов обнаружения веш,еств в мягких условиях, пригодных для обработки бумажных хроматограмм . Особенно часто для этой цели используют реакции восстановления серебряных oлeй окисления разнообразных производных моносахаридов периодат-купратом калия и многочисленные цветные реакции моносахаридов с ароматическими аминами — анилином, п- и о-аннзидином и многими другими в присутствии фталевой, ш,авелевой, трихлоруксусной, фосфорной и других кислот ( м. ). Напротив, тонкослойная хроматография на силикагеле и окиси алюминия позволяет применять для обнаружения предельно жесткие реагенты, из которых наибольшей популярностью пользуется концентрированная серная кислота ( м. ). [c.410]

    Магний можно определять также и колориметрическим методом. В данном разделе приводятся два атомно-абсорбционных метода, предназначенных главным образом для определения более 0,02% магния. В связи с тем, что цветная реакция, положенная в основу обоих методов, не специфична для магния, необходимо предварительно отделять магний от титана и других элементов. [c.52]

    Существует несколько методов для открытия малых количеств пиридина. Так, при взаимодействии пиридина с окисью этилена [10] наблюдается характерная цветная реакция, которая может служить для определения как одного, так и другого из реагентов. Наиболее часто применяется цветная реакция, основанная иа размыкании пиридинового цикла с образованием глутаконового альдегида или его производных, которые благодаря наличию сопряженных связей имеют интенсивную окраску (стр. 330). Так, пиридин может быть открыт и определен количественно в присутствии своих высших гомологов обработкой исследуемого раствора бромцианом и затем р-нафтил, амином [11] или бензидином [12]. При экстракции окрашенных продуктов реакции из нейтрального раствора изоамиловым спиртом можно определять пиридин колориметрически в количествах 0,05—0,37 мг. На том же принципе основана цветная реакция,которая имеет место при освещении пиридина ультрафиолетовым светом и последующем добавлении ароматического амина [13]. [c.373]

    Отличие фотоколориметрического метода от спектрофотометрического заключается в использовании немонохроматического излучения. Метод применяют для анализа окрашенных растворов, т.е. требуется предварительный подбор специальных цветных реакций, позволяющих количественно перевести бесцветные вещества в соединения, имеющие окраску. Метод применим для определения, как правило, одного из веществ в сложных лекарственных смесях, остальные определяются другими способами. [c.174]

    Линейно-колористический метод основан на цветных реакциях, протекающих в различных средах. Индикаторные трубки из прозрачного материала заполняют слоем индикаторного порошка, закрепленного с помощью тампонов из стекловолокна. Индикаторный порошок состоит из зерен адсорбента (носителя), на поверхности которого закрепляется слой реагента (индикатора), изменяющего свою окраску при взаимодействии с определяемым компонентом газа. При анализе трубка вскрывается с обоих концов и через нее пропускается определенный объем анализируемого газа. О величине содержания масла в газе судят по длине изменившего окраску слоя индикаторного порошка. Иногда в трубку помещают дополнительные слои различных адсорбентов, назначение которых — удаление из анализируемого газа примесей, мешающих определению искомого компонента. Кроме того, в некоторых случаях в трубке размещают ампулы с раствором реактивов, создающих условия протекания цветной реакции (кислоты, щелочи и т.п.) или выполняющих другие вспомогательные функции. [c.933]

    Существуют и другие методы определения алюминия, основанные на использовании цветных реакций ионов алюминия. [c.263]

    При взаимодействии витаминов с рядом химических соединений наблюдаются характерные цветные реакции, интенсивность окраски которых пропорциональна концентрации витаминов в исследуемом растворе. Поэтому витамины можно определить фотоколориметрически, например витамин B - при помоши диазореактива и т.д. Эти методы позволяют судить как о наличии витаминов, так и о количественном содержании их в исследуемом пищевом продукте или органах и тканях животных и человека. Для выяснения обеспеченности организма человека каким-либо витамином часто определяют соответствующий витамин или продукт его обмена в сыворотке крови, моче или биопсийном материале. Однако эти методы могут быть применены не во всех случаях. Встречаются трудности при подборе специфического реактива для взаимодействия с определенным витамином. Некоторые витамины обладают способностью поглощать оптическое излучение только определенной части спектра. В частности, витамин А имеет специфичную полосу поглощения при 328-330 нм. Измеряя коэффициент поглощения спектрофотометрически, можно достаточно точно определить количественное содержание витаминов в исследуемом объекте. Для определения витаминов B , В, и других применяют флюорометрические методы. Используют и титриметрические методы  [c.207]

    При дневном свете можно обнаружить 2 цг желтой фолиевой кислоты, такое же количество в УФ-свете в виде абсорбционных пятен и после обработки хлором и опрыскивания смесью о-толидин — иодат калия (реактив № 32) — 0,5 цг в виде серого пятна. Этой цветной реакции мешает, однако, обработка пластинки аммиаком, поэтому было бы очень желательно использовать более подходящ,ий растворитель. Обнаружение можно осущ,ествить и с помощ,ью других реактивов [65]. Для определения пригодны также чувствительные биоавтографические методы. [c.245]

    По методу прямой потенциометрии определяют значение электродного потенциала, затем вычисляют концентрацию определяемого иона в растворе. Этот метод нашел большое практическое применение для определения концентрации водородных ионов. Он имеет целый ряд преимуществ по сравнению с другими методами определения pH. В объемном методе анализа при потенциометрическом титровании цветной индикатор заменяют металлическим электродом. Конец реакции определяют по резкому изменению электродного потенциала в эквивалентной точке (скачок потенциала). [c.177]

    Авторы работы [1165] разработали метод, позволяющий определять ЗЬНз как в отсутствие, так и в присутствии Аз. Механизм цветной реакции ЗЬНд с диэтилдитиокарбаминатом серебра совпадает с таковым для А3Н3 [926, 927, 1165] и состоит в образовании интенсивно окрашенного золя Ag. При этом одна молекула 3]эНз выделяет 6 атомов Ag, а ЗЬ окисляется до ЗЬ + с последующим образованием диэтилдитиокарбамината. Вместо раствора диэтилдитиокарбамината серебра в пиридине предложено [1165] использовать хлороформный раствор этого реагента, 0,1 М по пиридину. Вместо пиридина могут использоваться некоторые другие амины, в том числе этаноламин, этилендиамин, ди-к-пропиламин и три- [c.57]

    Можно обнаружить холестерин и с помощью другой цветной реакции — по методу Сальковского. В этом случае несколько миллилитров вытяжки смешивают с равным объемом разбавленной (приблизительно 10%-ной) серной кислоты. Слой кислоты флуоресцирует зеленым цветом, а вытяжка приобретает окраску от желтой до интенсивно-красной .  [c.320]

    В связи с этим появились исследования, целью которых было повысить чувствительность метода Коппешаара. Первая стадия (отгонка фенола с водяным паром) оставалась без изменения, а определение фенола в дистилляте бромит-броматным методом было заменено на фотоколориметрическое. Например, была использована цветная реакция фенола с 4-аминоантипирином , который является очень чувствительным реактивом на все фенольные соединения. По другому способу получали окрашенное соединение феноЛа с диметиламиноантипирином , которое образуется в щелочной среде в присутствии гексацианоферрата калия как окислителя. Фотоко-лориметрирование проводили в кювете 0 мм с синим светофильтром точность определения 10%. [c.194]

    При скрининге применяются тщательно отработанные методы анализа, в том числе качественные и полуколичественные, например цветные реакции в индикаторных трубках [25,26]. В последних газообразную пробу пропускают через слой сорбента, модифицированного селективным реагентом. Микрофаммовые количества ДДТ и альдрина в растениях можно обнаружить по окрашенным пятнам на индикаторной бумаге, пропитанной 1%-ным раствором о-толуидина в ацетоне достаточно выдержать влажный срез растения в контакте с бумагой в течение 30 с [27]. Предложены также индикаторные бумаги для определения ртути, кобальта и других тяжелых металлов [28,29]. Следует заметить, что в настоящее время ощ> щается большая потребность в достаточно простьгх и чувствительных методах определения высокотоксичных веществ [c.157]

    Донорные числа изменяются в диапазоне от 2,7 (нитрометан, слабый донор электронов) до 38,8 (гексаметилфосфотриамид, очень эффективный донор электронов) см. табл. 2.3 в разд. 2.2.6. Непосредственно, т. е. калориметрически, определены донорные числа ОКОЛО 50 растворителей [26—28, 128]. Донорные числа определяли и другими методами, например с помощью спектроскопии ЯМР 23 а [29, 129], 27Д1 [130] и И [131]. Донорные числа растворителей-ДЭП можно оценить визуально с помощью цветных реакций, если вместо ЗЬСЦ применять комплексные соединения меди(П), никеля(П) или ванадила(1У) [132]. Донорные числа некоторых растворителей приведены в табл. 2.3 в разд. 2.2.6, а также в работе Маркуса [133], где дан и соответствующий критический анализ. [c.497]

    Реакция с треххлористой сурьмой, другими хлоридами металлов и цветные реакции с различными кислотами используются в методах колориметрического определения ретинола [38, 39]. Достаточно надежные данные дает метод определения ретинола по интенсивности максимума поглощения при 325 нм [40, 41]. [c.145]

    Лигнин определяют при помощи характерных для него цветных реакций с фенолами или с ароматическими аминами в присутствии соляной кислоты. Количество лигнина обычно определяют, удалив целлюлозу и гемицеллюлозу с помощью концентрированных H2SO4 или НС1. Другие методы определения лигнина построены на учете количества метоксильных групп, содержащихся в исследуемом материале. [c.176]

    При анализе различных материалов самое широкое распространение получили методы определения рения, основанные на цветных реакциях с роданидом, тиомочевиной и а-фурилдиоксимоы. Основным недостатком этих методов является необходимость отделения молибдена. Следует отметить, что модификациям и усовершенствованию указанных методов посвящается большое количество публикаций. В результате найдены пути повышения избирательности методов и чувствительности. Особый интерес представляют методы определения рения в присутствии молибдена и других мешающих примесей. Так, например, определению рения с тиооксином и 6-хлор-8-меркаптохинолином не мешают 5000-и 3300-кратный избыток молибдена соответственно, а с дифенил-карбазидом — 5000-кратные (и более) количества вольфрама. Повышенная избирательность этих методов связана с экстракцией образующихся комплексов рения. Особого внимания заслуживают экстракционно-фотометрические методы определения рения по светопоглощению ионных ассоциатов Re04 с рядом красителей. Эти методы обладают высокой чувствительностью и позволяют определять рений в присутствии значительных количеств молибдена. [c.86]

    Цветные реакции и другие методы. О количестве образующегося арсеназо III в процессе азосочетания судят по характерным реакциям с элементами или по изменению окраски раствора в щелочных или сернокислых растворах. Если анализируемый препарат арсеназо III содержит мало примесей, то раствор имеет синюю окраску при малых концентрациях КОН и H2SO4. Большой избыток диазосоставляющих и продуктов их разложения, растворы которых имеют обычно желтый или оранжевый цвет, вместе с синей окраской арсеназо III дает в водных или слабокислых растворах тусклые зеленые оттенки. [c.58]

    Предложен полумикрометод идентификации спиртов, основанный на образовании красной окраски при растворении в спирте продукта взаимодействия. 5,7-дихлор-2-метил-8-оксихинолина с пятивалентным ванадием. Окрашивание отмечено для 30 одноатодгаых спиртов, 8 двухатомных гликолей, метилового и уксусного эфиров, карбо-ваксов 1.500 и 6000, глицерина. Однако цветную реакцию дают и другие классы веш,еств — кетоны, альдегиды, эфиры, кислоты и амиды. Метод применим для капельных проб [4]. [c.335]

    Исследование пигментов желчи проводилось еще во время алхимиков первым из исследователей, добившимся известного успеха в этой области, был опять-таки Берцелиус. Он изучил методы разделения и очистки пигментов желчи на основании его работ Тидеману и Гмелину [17] удалось найти характерную цветную реакцию для пигментов желчи. Проба Гмелина является самой чувствительной среди всех других, известных для этих веществ, [c.221]

    Эту цветную реакцию в сочетании с методом ХТС использовали для определения стабильности эфиров и амида никотшювой кислоты в фармацевтических препаратах. Наряду с другими была проверена стабильность 3-бу-токсиэтилового эфира никотиновой кислоты в мазях, причем непрореагировавший эфир и образующаяся при омылении свободная никотиновая кислота были разделены методом ХТС и наличие обоих было доказано описанной выше цветной реакцией [15]. [c.331]

    Химические основы ультрам.икроанализа те же, что и макроанализа. Разумеется, характер реакций В разных методах анализа один и тот же в любых методах применяются реакции осаждения, цветные реакции, реакции окисления-восстановления и т. п. В ультрамикроанализе, как и в макроанализе, используются весовые, объемные, колориметрические и другие методы. [c.10]


Смотреть страницы где упоминается термин Цветные реакции и другие методы: [c.190]    [c.30]    [c.8]    [c.262]    [c.258]    [c.28]    [c.116]    [c.31]    [c.63]   
Смотреть главы в:

Органические реагенты для определения Ва и SO -> Цветные реакции и другие методы




ПОИСК





Смотрите так же термины и статьи:

Другие методы

Метод цветной

Реакции цветные



© 2025 chem21.info Реклама на сайте