Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Редкоземельные элементы см также по индивидуальным РЗЭ

    Индивидуальные окислы не являются эффективными катализаторами одностадийного окислительного дегидрирования бутана в бутадиен. На наиболее избирательном катализаторе из ннх —NiO— выход бутадиена не превышает 10%. Наиболее эффективными оказались сложные окисные катализаторы никель-молиб-деновый [43] и магний-молибденовый [44]. Соотношение компонентов в катализаторах может меняться в широких пределах. Найден ряд промоторов, в том числе окислы металлов IV периода, а также редкоземельных элементов, позволяющих существенно увеличить активность катализаторов. [c.694]


    Благодаря этому эмиссионный спектральный метод нашел более широкое распространение при определении РЗЭ в различных объектах, в том числе и в чистых препаратах индивидуальных РЗЭ. При этом достигнут довольно низкий предел обнаружения, который составляет 0,03—0,005% в зависимости от свойств элемента. Снижение предела обнаружения до 10 —10 % стало возможным при использовании химико-спектрального метода анализа, при котором применяются различные способы концентрирования. Обзор работ по определению РЗЭ в ряде объектов различными методами, в том числе спектральным эмиссионным и пламенно-фотометрическим, приведен в монографиях Д. И. Рябчикова и В. А. Рябухина Аналитическая химия редкоземельных элементов и иттрия (М., Наука , 1966), Н. С. Полуэктова, Л. И. Кононенко Спектрофотометрические методы определения индивидуальных редкоземельных элементов (Киев, Наукова думка , 1968), А. Н. Зайделя, Н. И. Калитеевского, Л. В. Липиса и М. П. Чайка Эмиссионный спектральный анализ атомных материалов (М.—Л., Физматгиз, 1960), а также в оригинальных работах, выполненных в последние годы. [c.4]

    Поскольку речь идет о хроматографическом разделении природных смесей редкоземельных элементов, в первую очередь возникает вопрос об извлечении их суммы из минералов. В зависимости от химического состава минералов последние или разлагают серной кислотой (фосфаты, карбонаты), или сплавляют со щелочью (титано- и танталониобаты) редкоземельные элементы выщелачивают затем водой (в случае сульфатов — холодной) и из раствора путем повторных осаждений щавелевой кислотой и аммиаком выделяют сумму редкоземельных элементов, более или менее свободную от посторонних примесей. В дальнейшем можно всю выделенную сумму непосредственно использовать для хроматографического разделения при этом осадок гидроокисей или окисей, полученных после прокаливания оксалатов, растворяют в азотной или соляной кислоте, упаривают раствор досуха для удаления избытка кислоты и полученный раствор вносят в колонку сорбента. С другой стороны, в ряде случаев (например, при крупногабаритном производстве чистых препаратов индивидуальных элементов, концентратов и технических смесей) целесообразнее сочетать известные химические методы переработки (деление суммы редкоземельных элементов на цериевую и иттриевую подгруппы, а также отделение церия, самария, европия и иттербия на основе их аномальной валентности) с хро- [c.168]


    В настоящее время методы рентгеноспектрального определения содержания редкоземельных элементов широко используются на практике. При их помощи осуществляется контроль за ходом технологической переработки минерального сырья и получением чистых индивидуальных препаратов редкоземельных элементов. Они позволяют также решать и обратную задачу — контролировать степень чистоты различных материалов в отношении вредных для некоторых процессов примесей редкоземельных элементов. В последнем случае методы рентгеноспектрального анализа обычно применяются после предварительной химической подготовки анализируемых проб. [c.190]

    Наиболее низкое значение pH, при котором происходит количественное осаждение гидроокиси алюминия, соответствует точке перехода бромкрезолового пурпурного. При pH выше 7,5 (примерно в середине между точками перехода окрасок бромтимолового синего и крезолового красного) растворимость гидроокиси алюминия значительно возрастает. Четырехвалентный церий, а также торий полностью гидролитически осаждаются примерно при pH = 3. Осаждение трехвалентных элементов группы редкоземельных металлов начинается при pH около 6 и, в зависимости от основности индивидуального окисла, простирается до pH = 14 (щелочности, необходимой для осаждения лантана). Торий количественно осаждается при значении pH, соответствующем Переходу окрасок ксиленолового синего или тимолового синего. При этой же величине pH происходит, но-видимому, осаждение гафния, циркония и титана. [c.415]

    Химические реакции также можно использовать для контроля процесса испарения (разд. 4.4.6). Они уже упоминались в связи с добавками угольного порошка. Как отмечалось при обсуждении разрядов в специальных атмосферах (разд. 3.2.5), наиболее обшей методикой, примененной для металлов, руд и шлаков, является хлорирование, позволяющее использовать постоянные аналитические кривые. Обычно дистилляция с носителем оказывает общее селективное действие, а хлорирование или фторирование не подавляет матричного эффекта, а только изменяет его [32]. Летучесть группы следов элементов можно увеличить с помощью галогенирующих добавок. Так, предел обнаружения некоторых элементов в порошке белого чугуна можно значительно снизить использованием в качестве добавки фторида натрия, при этом висмут, бор и алюминий можно определять в количествах 1-10 , 5-10 и 5-10 % соответственно [33]. Фторид свинца особенно подходит для увеличения чувствительности определения менее летучих элементов в минералах и горных породах, а также для термического разложения соединений с высокой температурой кипения. Добавляя к пробе фторид свинца в соотношении 1 1, можно определять элементы, образующие летучие фториды (Ве, 2г, ЫЬ, Та, W, 5с, X, некоторые редкоземельные металлы), с пределом обнаружения порядка 10 % и воспроизводимостью около 10%. Тетрафторэтилен (тефлон) также пригоден для использования в качестве фторирующего агента [34]. При анализе главным образом металлов группы железа в качестве носителя часто используется хлорид серебра. При разбавлении пробы не менее чем в 400 раз матричный эффект можно снизить до такого уровня, что становится возможным определение основных компонентов и примесей в материалах различного состава [35]. В этом случае хлорид серебра действует и как носитель. Летучие сульфиды также подходят в качестве носителя, если соответствующие термохимические реакции вызываются добавкой серы [36] или одновременно сульфата бария, серы и оксида галлия [37]. Таким способом можно увеличить чувствительность определения германия и олова в геологических пробах. Принимая во внимание термохимические свойства проб и различных добавок и составляя соответствующие смеси, можно в желаемом направлении влиять на ход испарения й создавать условия, благоприятные для группового или индивидуального определения элементов [38, 39]. Селективное испарение можно использовать в специальных источниках излучения (разд. 3.3.4) или даже в качестве предварительного способа разделения (разд. 2.3.6). [c.122]

    При переводе редкоземельных ионов в сложные органические соединения почти полностью теряется спектральная индивидуальность каждого отдельного элемента и спектры становятся почти идентичными [90], поэтому органические реактивы при спектрофотометрическом определении являются по существу групповыми. Вместе с увеличением чувствительности также увеличивается и мешающее действие некоторых ионов. [c.132]

    Экстракция получает широкое применение в технологии редких металлов для разделения близких по свойствам элементов [301. Так, для разделения рубидия и цезия наиболее перспективными из опробованных в настоящее время экстрагентов являются замещенные фенолы цирконий и гафний разделяют в промышленности экстракцией родапидов этих метал.лов метализобутилкетоном или нитратов трибутилфосфатом. С помощью этих экстрагентов можно разделить также ниобий и тантал из растворов смесей плавиковой и других минеральных кислот. Молибден и вольфрад разделяются при экстракции ацетофеноном. Редкоземельные элементы делят экстракцией грибутилфосфатом в присутствии высаливателей или из концентрированных растворов азотной кислоты. Хотя коэффициенты разделения соседних пар элементов малы, при наличии нескольких десятков ступеней экстракции возможно получить индивидуальные РЗЭ в чистом виде. Более высоким коэффициентом разделения при экстракции РЗЭ характеризуется ди-2-этилгексил-фосфорная кислота. [c.13]


    Эберли и сотр. [55] исследовали кислотные свойства И цеолитов с катионами индивидуальных редкоземельных элементов цеолиты предварительно прогревали при 427° С. Кислотность измеряли после адсорбции пиридина при давлении его паров 2 мм рт. ст. и темпе-, ратуре 260° С, а также после 30-минутного вакуумирования образца. По результатам измерения числа кислотных центров до и после удаления избытка адсорбата было рассчитано содержание центров, обратимо и соответственно необратимо адсорбирующих пиридин. Результаты показаны на рис. 3-77. Приблизительно 30 0% кислотных центров обратимо адсорбируют пиридин и, следовательно, представляют собой сравнительно слабые центрьт. Для того чтобы решить вопрос о кислотности гидроксильных групп, недоступных для пиридина, следовало бы изучить их взаимодействие с молекулами аммиака. Однако до последнего времени таких исследований, по-видимому, проведено не бьшо, У цеолитов с катионами различных редкоземельных элементов бренстедовская кислотность растет с увеличением ионного радиуса, тогда как у цеолитов со щелочноземельными катионами наблюдается обратная зависимость. Во всех образцах льюисов- [c.295]

    Установил калиеносность солянокупольных структур и доказал эффективность использования смещанных калийных фосфатов в качестве удобрений. Разработал методы получения, разделения, очистки и анализа комплексных соединений урана, тория, циркония, гафния, индия, рения, технеция, а также редкоземельных элементов. Исследованная им способность редкоземельных элементов к комнлексообразованию была положена в основу разработки индивидуальных методов получения соединений редкоземельных металлов в высокочистом состоянии. [c.441]

    Имеются некоторые противоречия в данных о распространении, приводимых различными авторами. Это положение можно объяснить отчасти трудностями получения достоверных аналитических результатов для индивидуальных редкоземельных элементов, а также для скандия и иттрия, и отчасти различиями, существующими между породами разных районов. Некоторые типичные величины приведены в табл. 33, которые составлены по данным Борисенко [1], Тейлора [2], Фланагана [3], Фриклунда и Флейшера [4], Флейшера [5] и других. [c.351]

    Основные научные работы посвящены исследованию редкоземельных элементов. Разработал (1940-е — начало 1950-х) способ выделения индивидуальных редкоземельных элементов с помощью ионообменной хроматографии. Благодаря этому способу редкоземельные элементы стали сравнительно доступными и дешевыми материалами, Совместно с Льюисом разработал (1933) методы получения тяжелой воды. Изучал энергетические уровни ионов редкоземельных элементов. Во время второй мировой войны руководил работами по получению урана высокой степени чистоты. Предложил использовать кальций и позднее магний для восстановле1шя четырехфтористого урана в металлический уран. Разработал промышленный процесс производства высокочистого металлического торил, а также церия и иттрия. Использовал ионообменную хроматографию для разделения изотопов а,зота (получил 200 г азота-15 со степенью чистоты 99,8%). [332J [c.474]

    В Одессе аналитическая школа была основана А. С. Комаровским, много сделавшим для внедрения органических реагентов. Из научных учреждений прежде всего следует назвать одесские лаборатории Института общей и неорганической химии АН УССР. Сотрудниками еще до войны предложен ряд органических реагентов— дипикриламин, хромотроп 2В, вошедших в классический фонд органических реагентов. Многое сделано также в области аналитической химии редких элементов и веществ высокой чистоты. Разработаны методы расчета констант, характеризующих аналити-<1ески важные комплексы. Необходимо отметить работы по пламенной фотометрии и люминесцентному анализу (последний метод особенно в приложении к определению индивидуальных редкоземельных элементов). Для спектрального анализа представляют интерес работы по применению дистилляционного разделения при определении микроколичеств элементов. Аналитические исследования ведутся также в университете и других учреждениях Одессы. [c.206]

    Смеси редкоземельных элементов, а также индивидуальные церий, лантан, празеодим и неодим в форме окислов и некоторых других соединений широко используются в производстве стекла. Они употребляются как для окрашивания, так и для обесцвечивания стекол. Используют их и для получения специальных сортов стекла с особыми свойствами. Наконец, редкоземельные окислы являются прекрасным полируюш,им материалом. [c.216]

    Редкоземельные элементы, см. также земли редкие и индивидуальные представители анализ адсорбционный 1329 отделение церия 5046 цветная реакция 4482, 4509 Редкоземельные элементы цериевой группы лимоннокислые комплексные соединения 456 открытие в присутствии элементов итгриевой подгруппы [c.382]

    Рассматриваемый нами сернокислотный метод комплексной переработки редкоземельных титанониобатов основан на использовании различий в свойствах двойных сульфатов титана, ниобия и тантала с сульфатом аммония для разделения этих элементов. Обращаясь к двойным солям, мы учитывали, что индивидуальные свойства химических элементов наиболее полно проявляются при образовании комплексных соединений. Поэтому нам представлялось, что на основе двойных солей могут быть решены все главные проблемы разделения редкоземельных элементов, титана, ниобия и тантала. Использование двойных солей, подверженных диссоциации в высокой степени, было желательно также и потому, что выделение из них титагш, ниобия и тантала осуществляется проще, чем из более прочных комплексных соединений, например методом гидролиза при нагревании. Кроме того, для образования двойных солей расходуются такие дешевые материалы, как серная кислота и сульфат аммония (аммиак), что способствует улучшению технико-экономических показателей производства. [c.7]

    В работах ряда исследователей [25—27] было найдено, что с оксихино-лином только некоторые элементы (Ьа, Ьи, У) способны образовывать флуоресцирующие комплексы. Так как наблюдаемая люминесценция проявляется также в комплексах с другими не редкоземельными металлами, то ее следует приписать органической части молекулы комплекса. Из числа реактивов следует упомянуть фениловый эфир салициловой кислоты (голубая флуоресценция), о-оксихинолин и его 5,7-дибромзамещенное (желто-зеленая флуоресценция). Причиной того, что к флуоресценции способны лишь комплексы перечисленных выше трех элементов, следует считать отсутствие в их ионах электронов на 4/-оболочке (Ьа, У) или наличие полностью заполненной 4/-оболочки (Ьи). Поэтому в комплексах с реактивами отсутствуют возбужденные уровни, способные к тушению флуоресценции вследствие безызлучательных переходов. У ионов остальных р. з. э. такие уровни имеются, что приводит к тушению возбужденных состояний молекул. До настоящего времени реактивы применялись лишь для локализации зон индивидуальных р. з. э. на бумажных хроматограммах [19], однако нет сомнения, что при дальнейшей разработке они смогут найти более широкое использование. [c.104]


Смотреть страницы где упоминается термин Редкоземельные элементы см также по индивидуальным РЗЭ: [c.289]    [c.6]    [c.108]    [c.6]    [c.129]    [c.278]    [c.398]    [c.398]    [c.41]   
Вредные химические вещества Неорганические соединения элементов 1-4 групп (1988) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Элементы редкоземельные



© 2025 chem21.info Реклама на сайте