Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Срок службы активных углей

    Промывая водой выходящие из реактора газы, получают 5%-ный водный раствор ацетона. Выход товарного ацетона составляет 86%, считая на этиловый спирт [4]. Катализатор теряет свою активность вследствие отложений угля и требует периодической регенерации, которую осуществляют, выжигая уголь воздухом. Общий срок службы катализатора — 6 месяцев. [c.316]


    Одним из лучших нертутных катализаторов гидратации ацетилена в ацетальдегид оказался активированный уголь, пропитанный фосфорной кислотой [49]. Выход ацетальдегида при оптимальных условиях (350° С, ацетилен вода = 1 10) достигает 90% катализатор непрерывно работает 140 час. до потери активности. Увеличение срока службы фосфорнокислотного катализатора изучали Меликян и Бадалян они нашли количественные характеристики потери активности и предложили рациональные пути ее восстановления путем периодической подпитки носителя фосфорной кислотой [50]. [c.270]

    Отравление катализатора вызывается примесями, содержащимися в ацетилене. Закупоривание пор носителя катализатора образующимися полимерами влияет на работу катализатора. Экстрагирование, например, бензолом или обработка щелочью и кислотой оживляет катализатор и возвращает ему почти полную активность (97% первоначальной), однако такое оживление катализатора возможно не более трех раз. Срок службы катализатора может быть увеличен, если вести реакцию при ступенчатом подъеме температуры. Это дало возможность удлинить срок службы катализатора до 19 суток. Сравнение концентраций катализатора показало, что активность 5%-ного катализатора меньше активности 8- и 10%-ного, активность 17%-ного, однако, больше 22%-ного. Примером получения катализатора является следующий способ. Активированный уголь (3 г), прокаленный при 300°, помещается на 3 часа в вакуум, после чего заливается горячим раствором окиси цинка (4 г) или кадмия в 98%-ной уксусной кислоте (8 мл) и воды (400 г). Уголь, залитый этим раствором, оставляется на ночь, затем сушится до постоянного веса при температуре 160°. [c.347]

    Этиловый спирт, получаемый спиртовым брожением, можно очистить от сивушных масел и альдегидов до необходимой степени чистоты с помощью перегонки. При повышенных требованиях к чистоте продукта, предъявляемых в парфюмерной промышленности и производстве спиртовых напитков, очищенный перегонкой концентрированный спирт снова разбавляют водой и с небольшой скоростью пропускают через большой адсорбер, заполненный зерненым активным углем. Время контакта составляет 1 ч и более. Обработка тонкопористым активным углем позволяет удалить все следы сивушных масел, при этом приходится мириться с образованием небольших количеств альдегидов. Так как для окончательного концентрирования необходима повторная перегонка, альдегиды можно удалить на этой стадии обработки. Активный уголь регенерируется многочасовой обработкой водяным паром срок службы такой шихты нередко составляет 2—3 года. [c.142]


    Изотермы адсорбции газов на активном угле (см. раздел 5.4) показывают сильную адсорбционную активность угля в области низких давлений. При получении высокого вакуума этот эффект можно использовать для поглощения следовых количеств газов, которые не удаляются парортутными высоковакуумными насосами. Активный уголь можно применять для выравнивания скоростей утечки в отпаянных вакуумных камерах, например термостатах с высоковакуумной изоляцией, используемых для транспортировки и хранения ожиженных газов. Несмотря на значительные достижения в технике обработки материалов часто в местах пайки или сварки появляются неплотности. Использование специально обработанного активного угля позволяет значительно увеличить срок службы подобных вакуумных камер. Угли, активированные водяным паром, показали лучшие результаты при адсорбции диффундирующих внутрь камеры газов — аргона, азота или кислорода. Для этой цели можно рекомендовать использование слоя активного угля толщиной в одно зерно размеры зерен не должны превышать [c.202]

    Адсорбенты можно разделить на следующие общие категории бокситы (природные минералы, состоящие в основном из А1зОз) активированная окись алюминия (очищенный боксит) гели (вещества, состоящие из окиси кремния или алюмогеля и получаемые с помощью химических реакций) молекулярные сита (натрийкальциевые силикаты, или цеолиты) углерод (древесный уголь), адсорбционные свойства которого получаются в результате активирования. Все эти вещества, кроме угля, применяются для осушки газа. Активированный уголь используется для извлечения углеводородов из природного гааа и очистки газа от некоторых примесей. Активность угля по воде очень незначительна. Первые четыре класса адсорбентов приведены в порядке возрастания их стоимости, определяемой их свойствами. Чем больше поглотительная активность адсорбента, тем он дороже стоит, хотя пропорциональность здесь и не соблюдается. Окончательный выбор адсорбента должен производиться с учетом стоимости оборудования, срока службы адсорбента, эффективности его применения в данном процессе и т. д. Чрезмерное внимание к одной лишь стоимости может [c.240]

    Основные неполадки, возникающие на установках регенерации растворителей активированным углем, вызываются загрязнением активированного угля и коррозией оборудования. В неудачно запроектированных системах серьезные трудности вызываются также истиранием адсорбента и забиванием слоя. Загрязнение может вызываться присутствием в воздушном потоке смолистых или поли-меризующихся соединений, остающихся на угле при его регенерацип и снижающих его активность. Допускается присутствие лишь весьма малых количеств некоторых примесей, которые обычно не извлекаются и не могут регенерироваться активированным углем, так как они накапливаются в верхних слоях зоны, которая первой контактируется с воздухом, и частично удаляются во время регенерации. Поскольку основная масса адсорбента остается в хорошем состоянии, достигается вполне приемлемый срок службы адсорбента иногда уголь возвращают поставщикам для повторного активирования. Из насыщенного парами растворителя воздуха перед поступлением его в адсорбер необходимо удалять некоторые загрязнители. Например, па установках регенерации спирта от некоторых операций пропитки фенольными смолами фенольные соединения можно удалять промывкой щелочным раствором в скрубберах — насадочных или с механическим распыливанием. Следы полимеризующихся или весьма тяжелых соединений можно удалять такл<е в специальных камерах предварительной очистки, установленных на линии газа перед главными адсорберами. В этом случае. чагрязпяются уголь или другие адсорбенты, применяемые для предварительной очистки, но предотвращается загрязнение адсорбента, находящегося в главном адсорбере. [c.303]

    Характерный раздражающий запах фтора обнаруживается яри концентрациях 2-10 , минимально допустимая концентрация для восьмичасового рабочего дня составляет 540 а для коротких периодов работы в атмосфере с присутствием паров фтора— до 3 10 . при работе со фтором надо пользоваться кислородными или воздушными масками со шланговым питанием или изолирующими кислородными или воздушными противогазами типа акваланг . Применение защитных противогазов с поглотителями недопустимо, так как возможно воспламенение и взрыв поглотителя (например, активированный уголь взрывается). Учитывая возможность поражения кожных покровов, при работе со фтором нужно применять специальную, запщтную, быстро-снимающуюся одежду, изготовленную из несгораемых материалов на основе неопрена. Даже специальная одежда в атмосфере с предельными концентрациями фтора имеет ограниченный срок службы, она должна периодически контролироваться и заменяться. Взрыво- и пожароопасность фтора обусловлена его исключительной химической активностью. Все углеводороды и органики во фторе воспламеняются и горят, как в кислороде, некоторые со взрывом. Большинство реакций может начинаться при нормальной температуре или при подогреве до 30—50° С 300—320 К. [c.75]

    После того как в 1894 г. В. Оствальд [1] высказал идею о переходе от малоэкономичного теплового двигателя к высокоэффективному способу получения энергии путем обратимого соединения топлива и кислорода в гальваническом элементе, а Э. Баур [2], посвятивший всю свою жизнь топливному элементу, впервые вскрыл разнообразные трудности, связанные с его реализацией, этот комплекс проблем снова и снова привлекал к себе внимание исследователей многих стран. Многие исследования, проводившиеся в этом направлении, оканчивались безуспешно. Будучи чисто термодинамическими, школы Нернста, Габера и Баура не могли объяснить свои неудачи по созданию топливного элемента прямого действия (элемента, в котором непосредственно окисляется уголь) такое объяснение стало возможным лишь с точки зрения обоснованного позднее учения о кинетике )еакций. Только в 1956 г. Бишоффу, Юсти и Шпенглеру 3] (в связи с их безуспешными попытками осуществить идею Шоттки [4] о топливном элементе прямого действия с твердыми электролитами) удалось доказать, что элементы прямого действия (главным образом из-за малой электрохимической активности твердых топлив) при температурах ниже примерно 800 0 не могут обеспечить плотность тока выше 1 ма смР-. Возникающая вследствие этого необходимость иметь большой объем элемента на 1 кет установленной мощности, тепловые потери, превышающие мощность на выходе, небольшой (при таких высоких температурах) срок службы материала конструкции и сложность удаления. несгоревших остатков явились причиной неосуществимости идеи Оствальда. [c.13]



Смотреть страницы где упоминается термин Срок службы активных углей: [c.242]    [c.190]    [c.149]   
Активные угли и их промышленное применение (1984) -- [ c.100 , c.101 ]




ПОИСК





Смотрите так же термины и статьи:

Активные угли

КСМ, активном угле GKT

Срок службы

Уголь Угли активный



© 2025 chem21.info Реклама на сайте