Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гомологичность нуклеиновых кислот

    Так как при денатурации нуклеиновых кислот их первичная структура сохраняется, то данный процесс может иметь обратимый характер. На способности нуклеиновых кислот восстанавливать свою нативную конформацию после денатурации (ренативация) основан чрезвычайно важный метод определения степени гомологичности, или родственности, нуклеиновых кислот. Этот метод называют молекулярной гибридизацией. Сущность этого метода (рис. 8.15) сводится к следующему сначала смешиваются растворы ДНК, вьщеленных из организмов разного вида (например, лягушки и кролика) затем эти растворы нагревают (для денатурации ДНК), а потом охлаждают. При этом возникают двухспиральные структуры разного состава наряду с двухспиральными молекулами, идентичными исходным ДНК, могут образовываться гибридные ДНК, содер- [c.283]


    Опыты по гибридизации позволили исследовать гомологичность нуклеиновых кислот из разных источников. Вначале молекулы расщепляют (например, с помощью ультразвука) на фрагменты длиной 1000 нуклеотидов и подвергают денатурации. Фрагменты денатурированной ДНК смешивают с денатурированной ДНК из другого источника. Участки ДНК разных видов, имеющие близкие нуклеотидные последовательности, в той или иной степени гибридизуются, тогда как участки с сильно различающимися последовательностями гибридизации не поддаются. Рассмотрим один из вариантов постановки таких экспериментов. Денатурированную ДНК определенного организма, не подвергавшуюся деградации, заключают в агаровый гель [90] или наносят на нитроцеллюлозный фильтр [91]. Фрагменты ДНК из другого источника пропускают через колонку с ДНК-содержащим агаром или через фильтр с абсорбированной ДНК. Комплементарное спаривание соответствующих фрагментов задерживает их на колонке или фильтре, тогда как фрагменты, не нашедшие себе партнеров , свободно проходят дальше. [c.143]

    ДНК-зонды применяют для поиска родственных генов в реакциях гибридизацрш с РНК — для выявления экспрессии данного гена в различных клетках. Для вьывления молекул нуклеиновых кислот, комплементарных всему зонду (или его участку), ДНК-зонды часто сочетают с методом гель-электрофореза, что позволяет получать информацию о размерах гибридизируемых молекул ДНК. Эффективное использование современных приборов, способных автоматически синтезировать любые нуклеотидные последовательности за короткий промежуток времени, дало возможность перестраивать гены, что представляет собой один из важных аспектов генной инженерии. Обмен генами, а также введение в клетку гена другого вида организма осуществляют посредством генетической рекомбинации in vitro. Этот подход был разработан на бактериях, в частности на Е. соИ. Он основан на важном свойстве ДНК — способности к перестройкам, изменяющим комбинацию генов в геноме и их экспрессию. Такая уникальная способность ДНК позволяет приспосабливаться данному виду к изменяющейся среде. Генетическую рекомбинацию подразделяют на два больших класса общую рекомбинацию и сайт-специфическую рекомбинацию. В процессе общей рекомбинации генетический обмен в ДНК происходит между гомологичными нуклеотидными последовательностями, например между двумя копиями одной и той же хромосомы в процессе мейоза (кроссинговера), или при скрещивании и перегруппировке генов у бактерий. [c.112]

    ТРАНС-ИЗОМЕРЫ, см. Геометрическая изомерия. ТРАНСКРИПЦИЯ, перенос генетич. информации, с помощью к-рого нуклеотидная последовательность ДНК определяет порядок расположения нуклеотидов в РНК. Осуществляется путем матричного синтеза РНК, последовательность рибонуклеотидов в к-рой комплементарна (см. Нуклеиновые кислоты) последовательности дезоксирибо-нуклеотидов в одной из двух цепей ДНК и гомологична (подобна) их последовательности во второй цепи ДНК. Синтезируется РНК с помощью фермента РНК-полимера-зы из рибонуклеозид-5 -трифосфатов последоват. наращиванием цепи РНК в направлении от 5 - к З -концу. Известна также обратная Т. (синтез ДНК на матрице РНК) — один из этапов репликации РНК-содержащих вирусов. Осуществляется фермеетом РНК-зависимой ДНК-полимеразой (обратная транскриптаза). За открытие обратной Т. Д. Балтимор и X. Темин в 1975 удостоены Нобелевской премии. ТРАНСЛЯЦИЯ, процесс, с помощью к-рого нуклеотидная последовательность матричной РНК (мРНК) определяет расположение аминокислот в синтезируемом белке. Заключит. стадия реализации генетич. кода — перевод 4-буквен- [c.587]


    Молекулярная гибридизация нуклеиновых кислот — метод определения степени гомологичности нуклеиновых кислот, основанный на их спосо б-ности к ренативации. [c.553]

    Идентификация нужного гена из клонотеки. В этом случае задача исследователя сводится к поиску среди миллионов клонов тех, которые содержат фрагмент ДНК с интересующим его геном. В настоящее время для решения такой задачи применяются молекулярные зонды (пробы). Зонд представляет собой меченую молекулу нуклеиновой кислоты, гомологичную последовательности гена. [c.46]

    Известно два матричных процесса биосинтеза синтез нуклеиновых кислот и синтез белка. Между ними есть существенная разница при очень большом подобии — при синтезе нуклеиновых кислот роль матрицы выполняет также нуклеиновая кислота гомологичная система), при синтезе белка матрицей является нуклеиновая кислота, а продуктом синтеза — белок гетерологичная система). Если в первом случае передача информации о последовательности соединения оснований в цепи вновь синтезируемой нуклеиновой кислоты достигается непосредственно путем подбора комплементарных оснований, то при синтезе белка на нуклеиновой матрице должен существовать какой-то промежуточный механизм, позволяющий переводить последовательность оснований матрицы на язык аминокислотной последовательности белка. [c.485]

    Если двум частично комплементарным цепям плазмидной ДНК дать возможность ренатурировать, то образуются гетеродуплексные молекулы, которые можно исследовать с помощью электронного микроскопа. Поскольку при электронно-микроскопическом анализе в случае соответствующего приготовления образцов одно-и двухцепочечные участки нуклеиновых кислот различаются, существует возможность картирования гомологичных и негомологичных участков. С тех пор как в практику вошли способы проверки с применением рестриктаз и методы выявления гомологий ДНК в растворе по радиоактивности, методология гетеродуплексного анализа с помощью электронного микроскопа перестала широко применяться для анализа плазмидной ДНК- Хотя техника такого анализа требует большого экспериментального искусства и специального оборудования, она все же заслуживает рекомендации как способ точной локализации различий между плазмидами и наилучшей оценки организации плазмидной ДНК- [c.156]

    Метод гибридизации нуклеиновых кислот можно использовать на препарате хромосом после их соответствующей обработки. Так, исследуемый ген можно локализовать в специфическом хромосомном сегменте, одном из тех сегментов, которые наблюдаются при дифференциальном окрашивании. Поскольку эксперимент проводится с зондом к-ДНК, синтезированном на м-РНК, можно утверждать, что идентифицированный участок хромосомы содержит активный ген. Известно, что в геноме помимо активных генов, могут находиться псевдогены, такие последовательности ДНК, которые гомологичны активному гену, ио не транскрибируются из-за отсутствия каких-то важных последовательностей вне транскрибируемой части. [c.69]

    По химическим свойствам полинуклеотиды мало отличаются от нуклеиновых кислот, и, следовательно, их можно фракционировать аналогичными или очень близкими методами. Синтетические гомологичные олиго- или полинуклеотиды как рибо-, так и дезоксирибо-ряда довольно легко разделяются по размерам молекул на колонках с ВЕАЕ-целлюлозой или ОЕАЕ-сефадек-сом [169—171]. На рис. 38.19 [172] приведен профиль элюирова- [c.89]

    Публикация выводов Эйвери, Мак-Леода и Мак-Карти в 1944 г, была принята с большим удивлением и недоверием, так как едва ли кто-либо ранее придавал ДНК такую информационную роль. Существовало предположение, что ДНК выполняет какую-то функцию в наследственных процессах, особенно после того, как Фёльген в 1924 г. показал, что ДНК является основным компонентом хромосомы. Но существовавшие тогда представления о молекулярной природе ДНК делали почти невероятным вывод, согласно которому ДНК могла быть носителем наследственной информации. Во-первых, начиная с 1930 г. существовало общепризнанное мнение, что ДНК представляет собой простой тетрануклеотид, состоящий из остатков адениловой, гуаниловой, тимидиловой и цитидиловой кислот (фиг. 73). Во-вторых, даже когда в начале 40-х годов наконец установили, что молекулярная масса ДНК на самом деле значительно выше, чем это следует из тетрануклеотидной теории, многие еще продолжали верить, что тетрануклеотид служит основной повторяющейся единицей большого полимера ДНК, в котором четыре пуриновых и пиримидиновых основания чередуются, образуя периодическую последовательность. ДНК, следовательно, рассматривалась как монотонно однообразная макромолекула, которая, подобно другим монотонным полимерам, таким, как крахмал (см. гл. II), всегда одинакова, независимо от природы ее биологического источника. Вездесущему присутствию ДНК в хромосомах большей частью приписывали чисто физиологическую или структурную роль. В то же время считали, что именно хромосомный белок придает информационную роль генам, поскольку еще в начале века были определены большие различия в специфичности структуры гетеро-логичных белков одного и того же организма или гомологичных белков различных организмов. Эйвери, Мак-Леод и Мак-Карти понимали во всей полноте трудность обоснования генетической роли ДНК и в заключительной части своей работы высказали следующее утверждение Если результаты представленного исследования о природе трансформирующего начала подтвердятся, то придется признать, что нуклеиновые кислоты обладают биологической специфичностью, химическая основа которой еще не установлена . [c.159]


    ДНК мелких фагов [202]. Частицы, полученные с РНК ВТМ, характеризовались константами седиментации до 152S, а инфекционность их РНК была устойчива к действию РНК-азы [525]. Комплекс с рибосомной РНК имел двойной пик в соответствии с двумя компонентами рибосомной РНК. Мы уже упоминали, что, хотя вирусные частицы этой группы имеют такие же размеры и такое же содержание белка, как и вирус желтой мозаики турнепса, они тем не менее содержат вдвое меньше РНК. Исходя из этого, можно понять, почему в такие оболочки удается загнать удвоенное количество РНК. Но удивительнее всего, что сказанное относится лишь к посторонней РНК— при реконструкции вируса с гомологичной РНК ее количество в вирусной частице никогда не бывает удвоенным. Неожиданным в опытах оказалось и то, что белки различных вирусов рассматриваемой группы, по многим свойствам непохожие друг на друга, тем не менее оказались способными взаимодействовать между собой с образованием частиц со смешанными оболочками [536]. Вирусоподобные частицы образуются также и в отсутствие нуклеиновой кислоты, но в противоположность другим верхним компонентам вируса они при этом отличаются от вируса по электрофоретической подвижности [27]. [c.222]

    Гибридизацию по Саузерну [7] используют для выявления и изучения организации последовательностей ДНК после их разделения с помощью гель-электрофореза. Процедура гибридизации подразделяется на два этапа. Первый этап — перенос разделенных фрагментов ДНК на нитроцеллюлозную мембрану, осуществляемый под действием капиллярных сил (в последнее время применяется электроперенос) таким образом, чтобы относительное положение каждой молекулы ДНК осталось неизменным. Второй этап — гибридизация связанной ДНК с пробами, меченными изотопами (комплементарной ДНК), для выявления определенных последовательностей ДНК. Анализ ДНК по Саузерну включает в себя апуриниза-дию, денатурацию и нейтрализацию ДНК внутри геля с последующим переносом и связыванием нуклеиновой кислоты с мембраной. Далее мембрану инкубируют с одноцепочечной пробой, меченной радиоактивным изотопом, а после отмывания — выявляют гибридизовавшиеся гомологичные фрагменты ДНК путем авторадиографии с использованием рентгеновской пленки. [c.277]

    I почти вся центральная часть занята открытыми рамками считывания. Ближайший к LTR-L кодирующий участок детерминирует синтез белка, который связывается с нуклеиновой кислотой этот участок аналогичен гену дад ретровирусов. Следующий кодирующий участок, pol, детерминирует синтез обратной транскриптазы, а также, вероятно, белки, гомологичные протеазе (pro), интегразе (int) и РНКазе Н ретровирусов. Ближе к З -концу геном ретровируса содержит третий кодирующий участок (env), который кодирует белок оболочки вириона. У большинства ретротранспозонов функциональный участок env, по-видимому, отсутствует возможно, именно с этим связана их неспособность продуцировать инфекционные частицы. ДНК 1АР, [c.260]

    Реализация генетической информации вируса осуществляется в соответствии с хорошо известными из биологии процессами транскрипции (от лат. 1гап8сг1р1ю — переписывание, т.е. синтез информационных РНК — иРНК, комплементарных матричным ДНК или РНК), трансляции (от лат. 1гап81а11о — передача, т. е. синтез белков на рибосомах клетки с участием иРНК) и репликации (от лат. герИса1ю — повторение, т. е. синтез молекул нуклеиновой кислоты, гомологичных геному). Поскольку генетический аппарат вирусов достаточно разнообразен, то передача наследственной информации в отношении синтеза иРНК различна. Основные схемы реализации вирусной генетической информации могут быть представлены следующим образом  [c.53]

    Поли нуклеотидные цепи РНК или ДНК считаются комплементарными, если они способны образовать протяженную двойную спираль с уот-сон-криковскими парами оснований. Две нуклеиновые кислоты можно назвать гомологичными, если их нуклеотидные последовательности идентичны или очень близки. Гомологичность двух нуклеино- [c.54]


Смотреть страницы где упоминается термин Гомологичность нуклеиновых кислот: [c.587]    [c.52]    [c.160]    [c.279]    [c.488]    [c.144]    [c.56]   
Биохимия Том 3 (1980) -- [ c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Гомологичность

Нуклеиновые кислоты



© 2024 chem21.info Реклама на сайте