Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен как гормон растений

    Координированные процессы клеточного деления, роста и дифференцировки контролируются многими факторами. Среди них особенно выделяется группа сигнальных молекул, называемых фитогормонами (или регуляторами роста растений), которые специфически действуют на рост растений и играют ключевую роль в их развитии Известно пять классов таких соединений ауксины, гиббереллины, цитокинины, абсцизовая кислота и газ этилен. Как показано на рис. 20-67, все это небольшие молекулы, способные легко проходить через клеточную стенку. Эти вещества вырабатываются в растительных клетках и либо действуют на месте, либо транспортируются по определенным путям к клеткам-мишеням. Так, например, суммарный поток ауксинов в побегах направлен от верхушки к основанию (скорость его около 1 см/ч). Несмотря на относительно малое число гормонов, растения справляются со своими регуляторными задачами благодаря многообразному использованию каждого гормона их клетки, как правило, реагируют на определенные комбинации этих веществ. Так, сам по себе ауксин способствует образованию корней, в сочетании с гиббереллином вызывает удлинение стебля, вместе с цитокинином контролирует рост боковых почек, а с этиленом стимулирует рост боковых корней. [c.436]


    Этилен, являясь мощным гормоном растений, может существенно менять их метаболизм, что в свою очередь будет влиять на активность азотфиксации у симбиотических и ассоциативных микроорганизмов. [c.310]

    Координирующие и регулирующие функции в процессах роста и развития растений выполняют растительные гормоны или фитогормоны. Различают пять групп фитогормонов ауксины, гибереллины, цитокинины, абсцизовая кислота и этилен. [c.140]

    Большое значение в жизни растений имеет простейший непредельный углеводород этилен. Он является растительным гормоном (фитогормоном), регулирующим определенные физиологические процессы во всем растительном мире. [c.15]

    Гормоны представляют собой органические молекулы, контролирующие и интегрирующие функции растений. Образуясь в незначительных количествах в одном органе или ткани, они перемещаются к другому органу или ткани и благодаря специфическим реакциям в ткани-мишени контролируют такие процессы, как рост, развитие и дифференциация. В настоящее время выделяют пять классов растительных гормонов ауксины, гиббереллины, цитокинины, абсцизовую кислоту и этилен. [c.300]

    Созревание плодов и другие аспекты развития и старения в растениях регулируются путем образования газообразного гормона— этилена. Тот факт, что действие этилена можно устранить, повысив концентрацию СОг в окружающей среде, лежит в основе практического приема хранения яблок и других плодов при высокой концентрации СОг. Этилен вызывает образование апикального изгиба у многих этиолированных проростков, и [c.327]

    Содержание четырех различных гормонов (гиббереллинов, цитокининов, этилена и ауксина) в тканях растений, выращенных в темноте, быстро изменяется после короткого облучения красным светом, тогда как уровень пятого (абсцизовой кислоты) изменяется при длительном влиянии красного света. Поскольку влияние красного света на гиббереллины, цитокинины и этилен можно снять дальним красным светом, фоторецептором [c.353]

    По-видимому, в регуляции изменения величины клеток, приводящего к закручиванию, участвуют два гормона — ауксин и этилен. Отрезанные усики гороха и других изученных растений при обработке ауксином закручиваются в кольца без тактильной стимуляции (рис. 13.9) это не удивительно, так как ауксин стимулирует рост, а образование колец связано с большим увеличением скорости растяжения клеток. Однако оно зависит от [c.402]

    Этилен ускоряет созревание плодов и способствует старению всех частей растения. Это гормон старения. Он весьма реакционноспособен. Этилен образуется в незначительных количествах в тканях высших растений и животных как промежуточный продукт обмена веществ, синтезируется также бактериями, грибами и низшими растениями. У высших растений этилен образуется из аминокислоты метионина, что было доказано на срезах яблок  [c.449]


    У растений имеется своеобразная циркуляторная система, в которой жидкость транспортируется вверх от корней по ксилеме и вниз от листьев по флоеме. Таким путем происходит перенос между клеткайй большого количества различных веществ. В то же время существует активный транспорт веществ через клеточные мембраны и против fpa-диента концентрации. Ряд соединений, транспортируемых от клетки к клетке по одному из этих двух способов, можно классифицировать как гормоны, причем с течением времени их обнаруживается все больше. Сейчас известно пять соединений или групп соединений, относящиеся к категории гормонов растения. Это ауксины (гл. 14, разд. И), гибберел-лины (гл. 5, разд. Д гл. 12, разд. 3,1), цитокинины (гл. 15, разд. Б,4), абсцизовая кислота (рис. 12-13) и этилен (гл. 14, разд. Г, 4). [c.323]

    РЕГУЛЯТОРЫ РОСТА РАСТЕНИЙ, вызывают те или иные изменения в развитии растений, не приводя их к гибели. Различают стимуляторы роста, ингибиторы и ретарданты (последние тормозят рост в высоту, но не влияют на плодоношение). Природные Р. р. р. (гормоны растений) — ауксины, гиббереллины, цитокинины, абсцизовая к-та, эндогенный (образующийся внутри растений) этилен и др. Наиб, важные пром. Р. р. р. арил- и арилоксиалифатич. карбоновые к-ты и их производные четвертичные соли аммония и фосфония производные индола, пиридазина, пиримидина, пиразола. Широко примен. (для борьбы с полеганием злаков, ускорения илн замедления роста, цветения, кущения, созревания, образования побегов, продления или нарушения периода покоя и т. д.) хлормекват-хлорид, ГМК, этефон, моно-М,Ы-диметилгидразид янтарной к-ты (дами-нозид), гибберелловая к-та. В зависимости от дозы, сроков обработки, обрабатываемой с.-х. культуры многие Р. р. р. могут действовать и как гербициды, дефолианты, десиканты. [c.500]

    Этилен продуцируется многими микроорганизмами и растениями и действует как газовый гормон растений. Культура клеток и тканей растений является удобной моделью для изучения этиленового метаболизма [4]. В отечественной литературе такие данные практически отсутствуют [5]. В настоящей работе методом газоадсорбционной хроматографии изучен метаболизм этилена в пшенице и суспензионной [c.60]

    ТИ и пиролиза природного газа и этана. Этен — ключевое соединение в современной органической технологии. Почти половина его идет на производство полиэтилена, остальное — на синтез этанола, хлороэтана (для получения тетраэтилсвинца), этилен-оксида (для получения этиленгликоля и его производных), эти-лендихлорида (для получения винилхлорида), этилбензола (для получения стирола), винилацетата и ацетальдегида. Этен ускоряет созревание фруктов (является гормоном роста растений) и с этой целью используется на практике. [c.250]

    Недавно обнаружилось, что многие бактерии, стимулирующие рост растений, синтезируют фермент, способный регулировать уровень растительного гормона этилена. Этот фермент, 1-аминоциклопропан-1-карбоксилат(АЦК)-де-заминаза, гидролизует АЦК, который является непосредственным предшественником этилена при биосинтезе в растениях. Одно из объяснений роли этого фермента состоит в следующем. Бактерия связывается с оболочкой семени или с корнями растения, а затем поглощает и гидролизует АЦК, понижая концентрацию этилена в тканях растения. Во многих растениях этилен стимулирует прорастание семян и выводит их из состояния покоя однако, если после прорастания уровень этилена оказывается слишком высоким, удлинение корней замедляется. Таким образом, бактериальная АЦК—дезаминаза предотвращает уменьшение скорости роста корней, и растение развивается быстрее. Кроме того, многие бактерии, стимулирующие рост растений, синтезируют ИУК, а избыток ИУК, не израсходованный на стимуляцию удлинения растительных клеток или ускорение деления, активирует АЦК-синтазу, что приводит к повышению концентрации этилена. Присутствие активной АЦК-дезаминазы препятствует накоп- [c.326]

    Этилен (Ethylen) Газ, действующий как растительный гормон. Способствует созреванию плодов, сохранению цветков, прорастанию семян, образованию корней участвует в ответе растения на стрессовые воздействия. [c.565]

    Этилен — бесцветный газ, хорошо растворимый в воде. Из всех форм живой материи только грибь[ и высшие растения способны синтезировать этот фитогормон. Он образуется из метионина через 5-аденозилметионин. По мере старения ткани синтез этилена увеличивается. Этилен является регулятором роста и развития растений. Этот гормон стимулирует процессы опадания плодов и листьев и оказывает заметное влияние на проницаемость мембран клеток. [c.142]

    Среди такого рода растительных биорегуляторов различают фитогормоны, природные стимуляторы и ингибиторы. К растительным гормонам, или фитогормонам, относятся ауксины, гибберел-лины, цитокиннны, абсцизовая кислота и этилен. В отличие от многих других биологически активных соединений, фитогормоны общие для всех растений биорегуляторы, которые синтезируются в активно делящихся клетках меристемы (верхушке побега, кончике корня, молодых листьях, семенах) и затем транспортируются в другие органы и ткани, где при низких концентрациях (10 10 М) осуществляют химический запуск физиологических программ. Существует четкая сбалансированность действия этих соединений а растительном организме, схематически показанная на рисунке 360. Молекулярные механизмы действия фитогормонов [c.715]


    Этилен стимулирует цветение растений ананаса. Так, Трауб и сотр. [94] нашли, что при концентрации этилена в воздухе, равной 1000 частей на миллион, начинается раннее и дружное цветение ананаса. В свое время на Гавайских островах с этой целью в широких масштабах использовалось опрыскивание растений ананаса водным раствором этилена. В настоящее время вместо этилена применяют нафталинук-сусную кислоту. Льюкок [61] обнаружил, что водные растворы ацетилена также стимулируют цветение у этого вида растений. Ананас — это единственное растение, у которого этилен (или ацетилен) служит в качестве гормона цветения или же является агентом, стимулирующим образование такого гормона. [c.391]

    Специфичность действия каждого регулятора определяется типом гормона. Для каждого класса соединений можно назвать несколько наиболее характерных эффектов. Пока нет единого мнения относительно того, насколько важен этилен и каковы его положение в системе ростовых веществ растений и роль в биорегуляции. Это соединение постоянно образуется в растениях и выделяется из них в виде газа. Казалось бы, излишне описывать в данном случае химические реакции в различных частях растения, но, чтобы показать влияние этилена, необходимо коснуться и этой области. Этилен даже в чрезвычайно малых количествах влияет на многие процессы в растении. С начала 60-х годов он получает все более широкое признание. Многие исследователи полагают, что влияние как природных, так и синтетических регуляторов роста растений опосредовано их действием на образование и (или) активность этилена. [c.13]

    Известно много веществ, влияющих на опадение. Однако, как было показано, немногие из них влияют на пектиназу и целлюлазу — ферменты, необходимые, по-видимому, для растворения серединной пластинки и ослабления первичных клеточных стенок в этой зоне, что, в свою очередь, приводит к опадению. Ауксины, этилен и абсцизовая кислота скорее всего непосредственно участвуют в этом процессе, в то время как другие вещества и другие гормоны могут воздействовать на опадение косвенно, оказывая влияние на эти три гормона. По-видимому, опадение контролируется не каким-либо одним гормоном или фактором внешней среды. Это результат комплексного взаимодействия факторов внешней среды, гормонов и физиологического состояния растений. [c.32]

    В ходе эволюции растения выработали собственную систему защиты от патогенов и вредителей. Сигнальным и регуляторным центром этой системы является фитогормон этилен. Биосинтез этилена резко усиливается под действием повреждений, вызываемых вредителем или патогеном. Свойство автокатализа синтеза этилена приводит к тому, что концентрация этого фитогормона повышается не только в зоне поражения, но и во всем растении. При этом может наблюдаться и аллелопатический эффект этилена, обусловленный его способностью диффундировать из растения и разноситься ветром, увеличивая, вследствие автокатализа, уровень данного гормона в растениях, находящихся в зоне его распространения. [c.364]

    К настоящему времени получен достаточно обширный материал по фитогормонам — соединениям, выполн щим функции гормонов в растениях. К ним можно отнести ауксины, цитокинины, абсцизины, гиббе-реллины и этилен. Фитогормоны регулируют многие процессы жизне- [c.306]

    Любой гормон представляет собой вещество, образуемое в малых количествах в одной части организма и транспортируемое затем в другую часть растения, где он производит специфический эффект. Расстояние, на которое транспортируется гормон, может быть относительно большим, например от листа до почки, но оно может быть и меньше—от апикальной меристемы до лежащих ниже клеток — или даже совсем незначительным— от одной органеллы до другой в пределах одной клетки. Решающим критерием является миграция гормона из зоны синтеза к месту его действия, где он выступает в качестве химического курьера . Было установлено, что в высших растениях содержится несколько важных классов регулирующих рост гормонов ауксин, гиббереллины, цитокинины, абсцизовая кислота и этилен, которые мы сейчас и рассмотрим. Гиббереллины и цитокинины встречаются в виде групп родственных, сходно дейсивую-щих молекул, тогда как каждый из трех остальных классов в природе представлен только одним соединением. Из-за сложных химических и физиологических различий между гормонами мы будем рассматривать их так, как будто бы они действуют на клеточные процессы по отдельности. Но это разграничение искусственное. В любой данный момент в клетке или ткани присутствуют несколько или даже все из этих ростовых веществ. Следовательно, рост или раз1витие той или иной ткани обусловлено присутствием и взаимодействием всех этих соедииений. [c.258]

    Хотя ученые зналн об этих довольно простых фактах очень давно, они не предполагали, что влияние этилена на клетки растения н противоположное ему влияние двуокиси углерода — это компоненты нормальной физиологической регуляции в растении. Считалось, что этилен образуется в (результате заражения растения определенным патогеном или, возможно, вследствие физиологического разрушения растительных клеток, обусловленного их повреждением, неблагоприятной температурой хранения или просто старением. Однако недавние эксперименты показали, что этилен представляет собой вы рабатываемый здоровыми клетками растений обычный метаболит, осуществляющий нормальный регуляторный контроль таких морфогенетических явлений, ак созревание плодов и опадение листьев. [Гак как этилен образуется в незначительных количествах и может проявлять активность и в тех клетках, в которых он не производится, его по праву можно рассматривать как растительный гормон. [c.304]

    Разнообразные мо рфологические реакции, возникающие в интактных растениях в ответ на обработку их этиленом, были известны задолго до того, как стало ясно, что этилен играет роль природного регулятора -в растениях. Воздействие этиленом на этиолированные проростки гороха оказывает, например,значительное влияние на их рост. Эта реакция использовалась в качестве биотеста для определения данного гормона. Выращенные в темноте семидневные проростки гороха состоят из вытянутого тонкого непигментированного стебля, резко загнутого крючком апекса, желтоватой верхушечной почки и корней. При помещении проростков в ток воздуха, содержащий этилеи, их растяжение в длину подавляется, а латеральный рост актнви  [c.304]

    Самая главная роль этилена в растении, вероятно, заключается в его влиянии на старение или созрева ие плодов. Мы уже упоминали, что этилен индуцирует созревание здоровых плодов, расположенных вблизи больных. Он участвует также и в естественном процессе созревания. Крупный плод развивается из стенки завязи меньшего размера под влиянием гормонов ауксина и гиббереллина, стимулирующих деление и растяжение клеток. После того как плод достигает максимальных размеров, в нем начинаются тонкие химические изменения, которые в конечном счете приводят к созреванию плода и делают его съедобным. Многие зрелые плоды, подобно закончившим рост яблокам, несъедобны из-за их кислого вкуса и твердости. Процесс созревания яблока состоит частично в исчезновении значительной доли яблочной кислоты, которая придает незрелому плоду кислый вкус. Затем следует утончение клеточных стенок, что позволяет уменьшить механическое усилие, необходимое для отделения одной клетки от другой. Многие плоды созревают быстрее после уборки, а это означает, что сигналы о созревании возникают в самом плоде или что торможение созревания производится другими частями растения. [c.309]

    НО в сто раз. Когда созревание приостанавливается под воздействием такого фактора, как низкая температура, образование этилена тоже подавляется. Из этого можно заключить, что он представляет собой естественный гормон созревания плодов у растений. Дальнейшее доказательство в поддержку этого заключения было получено в опытах, в которых из плодов при поии-женном давлении удаляли этилен сразу же после его образования. При этом концентрация Ог поддерживалась на том же уровне, что и в атмосфере. В этих условиях созревание замедлялось. [c.310]

    Описанный выше эффект возникает при искусственной обработке черешков этиленом. Однако ясно, что этилен является также природным агентом, вызывающим опадение листьев, поскольку его выделение клетками отделительной зоны усиливается еще до начала опадения./Отделительная зона по существу представляет собой группу мгСб коспециализированных клеток, и этилен оказывает влияние главным образом именно на- этд. клетки, часто лишь на один слой. Указанные клетки — э то единственные клетки в черешке и, вероятно, в целом растении, которые в природных условиях вырабатывают большие количества целлюлазы. Данный пример опять-таки служит иллюстрацией того, что есть две взаимодействующие системы, регулирующие рост и развитие растений гормоны, обеспечивающие сиг- [c.314]

    Одним из растительных гормонов, которому приписывается способность индуцировать деятельность ферментов, является этилен [Неггего, Hall, 1960 Riov et al., 1982]. Молекула этилена имеет в своем составе ненасыщенную двойную связь (Н2С = СНг), и поэтому он весьма реакционноспособен и оказывает действие на все вегетативные органы растения. Внутриклеточно образование этилена может идти прн превращениях многих молекул в присутствии перекисного окисления. Так, например, ионы меди индуцируют светозависимое перекисное окисление [c.34]

    Авторы приведенной схемы (см. рис. 22) считают, что в самом начале процесса, очень быстро реагируя на любой стресс, активируются основные пероксидазы как первый щаг ответа, а изменения, связанные с метаболизмом ауксина и этилена, индуцируют усиление синтеза кислых пероксидаз как второй, и более поздний, щаг ответа или защиты. Предполагаемая последовательность реакций, составленная по имеющимся данным, показывает, что только два гормона тесно связаны через посредство пероксидазы с процессами ответа на различные нарущения. Ауксин и этилеи, как циркулирующие гормоны, регулируют метаболизм растения в целом. Ауксин, пероксидаза и этилен взаимосвязаны при лигнификации тканей и проявляют свое действие в местах образования локальных повреждений. Сигналом, транспортируемым на расстояние, может быть АЦК, присутствие которой в различных частях растения является лимитирующим и определяющим фактором. АЦК-зависимый синтез этилена выражается как градиент реакций по всему растению. Такой тип сигнальных реакций обусловливает повыщение активности пероксидазы на значительном расстоянии от клеток, пораженных вирусом, обеспечивая проявление вирусиндуцированной системной устойчивости. [c.105]

    Кто бы мог подумать, что столь простое химическое соединение может иметь важнейшее значение для роста, функционирования и эволюции растений Этилен (СН2=СНг) при обычных температурах находится в газообразном состоянии. Как правило, клеточную дифференцировку и эволюцию связывают с генами, поэтому немыслимо предположить, чтобы растительный гормон представлял собой простое газообразное вещество. Констатируя это противоречие, Уоринг и Филлипс С Уаге1п ,. РЬНИрз, 1978) пишут Этилен в роли гормона может показаться курьезом . И все же этилен — это просто газообразный гормон, образующийся у высших растений из аминокислоты Ь-метионина (считающегося его единственным природным биохимическим предшественником). Этилен регулирует процессы развития через механизмы, не связанные непосредственно с биосинтезом белков. По-видимому, он воздействует на пролиферацию клеток, изменяя перенос протонов. [c.93]

    Г. Фиттинг, в 1909—1910 гг. изучавший особенности опыления и оплодотворения у орхидей, обнаружил, что в пол-линиях (комочки пыльцы орхидей) присутствует какое-то вещество, вызывающее разрастание завязи и формирование партенокарпических (бессемянных) плодов. Фиттинг первым предложил ввести в физиологию растений термин гормон . Так как в дальнейшем исследования сосредоточились главным образом на изучении участия этих физиологически активных веществ в процессах роста и ростовых движений, их стали называть ростовыми гормонами или ростовыми веществами. За 60 лет с начала XX в. были открыты этилен, индолил-З-уксусная кислота (ауксин), цитокинины, гиббереллины, абсцизины, изучены фенольные ингибиторы роста негормональной природы. По мере открытия все новых фитогормонов и изучения разных аспектов их действия становилось очевидным, что физиологически активные вещества этого класса принимают участие не только в процессах роста, но и в [c.38]

    Алейроновым слоем называют периферический слой клеток,, содержащих большое количество белка и расположенных вокруг эндосперма семян злаков. Эта ткань очень активна при прорастании и на ранних стадиях роста проростков, а затем быстро дегенерирует и отмирает. До прорастания алейроновый слой служит запасающей тканью, а при прорастании он является источником ряда гидролитических ферментов, секретируе-мых в эндосперм и участвующих в мобилизации его запасных веществ. Таким образом, алейроновый слой представляет собой однородную ткань, состоящую из одинаковых клеток, запрограммированных на выполнение небольшого числа функций на ранних этапах жизни растения. После набухания семян, вышедших из состояния покоя, клетки алейронового слоя выполняют свои функции при условии получения ими соответствующих гормональных сигналов. Основным гормоном, регулирующим метаболизм алейронового слоя у семян ячменя, является гиббереллин, поступающий из прорастающего зародыша. Одпако он, очевидно, вступает в сложное взаимодействие с абсцизовой кислотой и, возможно, с этиленом. Подавляющее большинство экспериментов было проведено на алейроновом слое семян ячменя, но такая же ситуация типична и для семян других злаков. Исключение составляют -семена пшеницы, у которых в регуляции начала гидролиза принимают участие таюке ауксипы и цитокииины. [c.148]

    У некоторых растений, главным образом у видов, растущих под водой (например, рис и altitri he), растяжение междоуз- лий и корней не подавляется, а в присутствии этилена проис- однт быстрее. Такая реакция водных растений иа этилен мог-.ла возникнуть как адаптация к гораздо меньшей скорости диффузии этилена в воде по сравнению со скоростью диффузии в воздухе. В результате этого в водной среде удаление выделяемого этилена от поверхности растения происходит гораздо медленнее и в погрулеенных тканях растения молеет возникнуть высокая концентрация газа. Чтобы справиться с этой проблемой, водные растения в процессе эволюции выработали иные ответные реакции на этилен и изменили свою чувствительность к гормону. [c.184]

    О роли цитокининов в регуляции активности камбия известно немного, но работа, проведенная на изолироваииых отрезках стеблей гороха, показала, что эти гормоны также могут стимулировать деления клеток в камбии и усиливать лигнификацию развивающихся клеток ксилемы. Обработка растений этиленом и абсцизовой кислотой влияет на активность камбия, ио пока нет данных об участии этих веществ в естественном процессе регуляции деления камбиальных клеток и диффереицировки проводящей ткани. [c.191]


Смотреть страницы где упоминается термин Этилен как гормон растений: [c.500]    [c.112]    [c.181]    [c.202]    [c.106]    [c.465]    [c.436]    [c.200]    [c.101]    [c.80]    [c.93]    [c.107]    [c.107]   
Биохимия Том 3 (1980) -- [ c.112 , c.323 ]




ПОИСК





Смотрите так же термины и статьи:

Гормоны



© 2025 chem21.info Реклама на сайте