Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

серебро сплавы меди сплавы никеля

    Металлургию подразделяют на черную (железа и его сплавов) и цветную (цветных металлов). Цветные металлы в соответствии с их свойствами делят на легкие, тяжелые, благородные, редкие и др, К легким металлам относят титан, алюминий, магний, щелочноземельные и щелочные металлы к тяжелым — медь, свинец, никель, цинк, олово к благородным — золото, серебро, металлы платиновой группы. [c.165]


    Начнем со случая, когда компоненты А1 и дают твердые сплавы любого состава к ним относятся, например, твердые сплавы меди и никеля, серебра и палладия, хлористого рубидия и хлористого калия, золота и меди и т. д. Обозначим через Ф и Ф" соответственно жидкий и твердый сплавы. Считая давление постоянным и откладывая по оси абсцисс составы (весовые или мольные доли) [c.433]

    ЛИТЕЙНЫЕ материалы - металлические и неметаллические материалы, физико-хим. и технологические свойства к-рых используют для литья изделий. Л. м. подразделяют на литейные сплавы, шихтовые, формовочные п огнеупорные материалы. Литейные сплавы представляют собой материалы, полученные сплавлением металлических или неметаллических компонентов. Металлические сплавы содержат, кроме осн. металла, легирующие материалы в них вводят также небольшое количество модифицирующих материалов. В зависимости от металлургических особенностей плавки в сплавах содержатся примеси, в большинстве случаев нежелательные (напр., сера и фосфор). К наиболее распространенным металлическим относятся железоуглеродистые сплавы, на долю к-рых приходится 95—98% литых изделий. Широко применяют также цветные сплавы, к-рые подразделяют на тяжелые (меди сплавы, никеля сплавы, кобальта сплавы., олова сплавы, свинца сплавы, цинка сплавы, подшипниковые сплавы), благородные (золота сплавы, серебра сплавы, платины сплавы), легкие сплавы п тугоплавкие сплава. Подшипниковые сплавы [c.710]

    Исследования, проделанные позднее на железе 2, 3], а также на других металлах — меди [4—6], никеле [7], серебре [8] и на сплавах никель — хром и железо — хром [9, 10], позволили установить чрезвычайно общий характер этого явления. На рис. 3 показаны зерна окисла СигО на меди, а на рис. 4 — зерна окиси хрома на сплаве никель — хром. На этих рисунках хорошо видно ярко выраженное влияние ориентации нижележащего металла на структуру окисла. Недавно было замечено [11], что в реакциях сульфирования проявляются такие же свойства на рис. 5 видны зерна сульфида СигЗ, полученного на поверхности меди, на которую действовали водородом, содержащим следы сероводорода. Многие признаки указывают на то, что некоторые реакции гидрирования и хлорирования могут иметь те же особенности. [c.294]

    После полного растворения образца сплава меди с никелем в растворе нитрата серебра выделяется 53,95 г серебра. При погружении образца этого сплава такой же массы в раствор сульфата меди, масса образца по окончании реакции увеличивается на 0,24 г. Определите процентное содержание каждого из металлов в сплаве. [c.24]


    При золочении деталей из меди и ее сплавов необходимо принимать меры для предотвращения диффузии компонентов сплава — меди и цинка в покрытие, что интенсифицирует коррозию и ухудшает электрические характеристики деталей. Барьером против этого нежелательного явления служит промежуточный слой между золотом и основой. В качестве такого подслоя не следует применять медь или серебро, диффузия которых проявляется весьма активно. Одним из наиболее надежных барьерных материалов является никель. Даже при толщине 1,5—2 мкм он предотвращает проникновение компонентов латуни к поверхности покрытия. [c.104]

    Металлические перегородки особенно пригодны для работы с химически агрессивными жидкостями, при повышенной температуре и в условиях значительных механических напряжений. Они изготавливаются в виде перфорированных листов, металлических сеток и тканей из углеродистой или нержавеющей стали, меди, латуни, бронзы, алюминия, никеля, серебра и различных сплавов. [c.363]

    Параболический закон роста окисной пленки, установленный впервые Тамманом на примере взаимодействия серебра с парами йода, наблюдали в опытах по окислению на воздухе и в кислороде меди и никеля (при I > 500° С), железа (при I > 700° С) и большого числа других металлов и сплавов при определенных температурах, В табл. 6 приведены параметры диффузии элементов в окислах. [c.59]

    Ингабитор предназначен для защиты сложных изделий (состоящих из различных металлических и неметаллических материалов) от атмосферной и биологической коррозии. Применяют для защиты изделий из стали, меди и её сплавов, алюминия и его сплавов, хрома, кадмия, никеля, олова, серебра и припоя, а также оксидированных, хромированных, кадмированных, никелированных поверхностей металлов, в том числе оксидированного магния. Ингабитор применяют на пористых носителях, содержащих 40-50 % (мае. доля) ингабитора. [c.377]

    МЕДИ СПЛАВЫ — сплавы на основе меди, содержащие олово, цинк, алюминий, никель, железо, марганец, кремний, бериллий, хром, свинец, золото, серебро, фосфор и другие легирующие элементы. Добавки повышают прочность и твердость, стойкость против коррозии, улучшают антифрикционные свойства. М. с. делят на латуни, бронзы и медно-никелевые сплавы. Латуни — М. с., в которых главным легирующим элементом является цинк. Самыми распространенными латунями являются томпак (80  [c.156]

    На рис. VII.5 представлена диаграмма системы, в которой два компонента неограниченно растворимы друг Б друге не только в жидком состоянии, но и в твердом. Обычно такие системы образуют близкие по своей природе вещества, имеющие кристаллические решетки одного типа, например медь и никель, медь и серебро. В таких сплавах атомы одного элемента могут замещать атомы другого в узлах кристаллической решетки, образуя так называемые твердые растворы. На рис. VII.5 область I —жидкие растворы, область III —твердые растворы и область II — двухфазная смесь твердых и жидких растворов. Кривая T lT- — линия ликвидуса, а T isT 2 — солидуса. [c.92]

    По агрегатному состоянию растворы бывают жидкие, твердые и газообразные. Примером первых могут быть растворы солей в воде примером вторых — сплав никеля и меди (из которого делают разменную монету) или сплав серебра и золота примером третьих — смесь газов, воздух .  [c.139]

    По агрегатному состоянию растворы бывают жидкие, твердые и газообразные. Примером жидких растворов могут быть растворы солей в воде примером твердых - сплав никеля и меди (из которых делают разменную монету) или сплав серебра и золота примером газообразных - смеси газов, воздух. Наибольшее значение имеют жидкие (водные) растворы. [c.115]

    НЕЙЗИЛЬБЕР (нем. Neusilber, букв.— новое серебро) — сплав меди с никелем и цинком. Применялся как декоративный материал более 2000 лет назад. В СССР производят Н. марки МНЦ15-20 (18,0-22,0% Zn 13,5—16,5% Ni остальное — медь) и свинцовистый Н. марки МНЦС16-29-1,8 (15-16,5% Ni 1,6-2,0% РЬ 51—55% Си остальное — цинк). Сплав технологичен (см. Технологичность), легко поддается пайке, сварке, полированию, штампованию, обработке резанием, хорошо принимает защитные покрытия. Отличается хорошими мех. св-вами, [c.42]

    В производстве дорогих бытовых предметов, ювелирных изделий, иногда как имитацию серебра применяют сплавы меди с никелем -нейзильбер (альпан, аргентан) и мельхиор. Нейзильбер - сплав, содержащий 65 % меди, 15 % никеля и 20% цинка. Имеет цвет, близкий к цвету серебра, весьма коррозионностоек. Мельхиор - сплав, содержащий 80% меди и 20% никеля. Характеризуется высокой текучестью и легко обрабатывается в холодном состоянии (ковка, штамповка). [c.132]

    Титрование растворами триазолов и сульфатиазолов. Серебро титруют с серебряным электродом и насыщенным каломельным [699] или ртутно-сульфатным [221] электродом сравнения растворами бензтриазола или бромбензтриазола [221] в последнем случае наблюдается более отчетливый скачок потенциала. Величина скачка потенциала в кислой среде меньше, чем в нейтральной, однако достаточна для определения конца титрования (500— 700 мв). Наиболее благоприятной средой для титрования является 0,05—0,1 N НКОд. Определению серебра не мешают 100-кратные количества свинца, цинка, никеля и кобальта. При введении комплексона III титрование серебра раствором бромбензтриазола в нейтральной или слабоаммиачной среде возможно в присутствии Си, Со, N1, 2п, Т1 и РЬ при соотношении 1 200. СГ определению не мешают мешают 1", СК и З ОГ- Ошибка титрования колеблется в пределах 0,02—0,04 мг при содержании серебра 0,5—2,5 мг. Метод применен к анализу сплава серебра, содержащего медь и никель, а также для анализа свинцово-серебряной руды, содержащей Хп и Си [221]. Потенциометрическое титрование серебра в нейтральной или слабощелочной среде раствором 1,2,3-бензтриазола в присутствии комплексона III см. [965]. [c.95]


    Если для пайки металла М2 применяется неэвтектический сплав с составом Л1 (рис. 2-28), то он растворяет этот металл и образуется сплав с более низкой температурой плавления (например, Лг). При дальнейшем нагреве (до те.м-пературы, необходимой для плавления сплава А ) новый сплав Лг будет вытекать из соединяемого зазора, оставляя в нем пустоты. При пайке меди серебром (при 980°С) образуется сплав медь — серебро с более низкой температурой плавления (рис. 2-29). Поэтому в данном случае рекомендуется использовать эвтектический сплав медь — серебро (рис. 2-29), при котором как возрастание, так и уменьшение меди в составе сплава приводит к повышению температуры плавления. Точно так же для систем, не имеющих эвтектики (как, например, сплавы медь — золото или золото — никель, рис. 2-29 и 2-30), можно применять сплав с наинпз-шей температурой плавления. [c.56]

    На присутствие меди укажет уже окраска. Если у сплава красный или желтый оттенок, вероятно, в нем имеется медь. Правда, например, сплавы меди с серебром даже при высоком содержании меди имеют серебристый цвет. Старые, так называемые серебряные монеты содержат от 10 до 75% меди Предварительную пробу проведем, капнув на металл азотной кислотой. На присутствие меди укажет появляющаяся чаще всего после высыхания зеленая кромка нитрата меди (похожую реакцию дает никель). Исследуем полученное соединение с помощью перла буры. Для этого нагреем палочку магнезии в несветящемся пламени и горячей погрузим ее в буру. Прилипнувщая соль сплавится, в результате получится стекловидный щарик. Этот щарик в горячем состоянии положим на след соединения меди, например, на кромку нитрата, образовавшегося в предыдущем опыте. После нагревания в окислительном пламени перл буры окрасится в зеленый цвет, который при охлаждении изменится на голубой. Соединение никеля в этом случае окрасит буру в коричневый цвет. [c.77]

    На присутствие меди укажет уже окраска. Если у сплава красный или желтый оттенок, вероятно, в нем имеется медь. Правда, например, сплавы меди с серебром даже при высоком содержании меди имеют серебристый цвет. Старые, так называемые серебряные монеты содержат от 10 до 75% меди Предварительную пробу проведем, капнув на металл азотной кислотой. На присутствие меди укажет появляющаяся чаще всего после высыхания зеленая кромка нитрата меди (похожую реакцию дает никель). Исследуем полученное соединение с помощью перла буры. Для этого нагреем палочку магнезии в несветящемся пламени и горячей погрузим ее в буру. Прилипнувшая соль сплавится, в результате получится стекловидный шарик. Этот шарик в горячем состоянии положи.м на след [c.65]

    Весьма перспективными наполнителями для электропроводящих клеев являются порошки палладия [129, с. 51]. Электропроводность таких клеев составляет Ы0 —5-10 Ом-м, и хотя они уступают по этому показателю композициям, наполненным серебром, но имеют перед ними весьма важное преимущество—I обеспечивают стабильную электропроводность с большим числом склеиваемых материалов — серебром, платиной, медью, золотом, никелем, палладием, алюминиевыми сплавами, полимерными композиционными материалами с угольным наполнителем, диэлектриками. На рис. 2.4 и 2.5 приведены данные о прочности клеевых соединений меди и алюминия, выполненных зпокси-полиэфирным клеем, наполненным палладием и серебром. [c.112]

    В качество проводящих материалов чаще всего применяются золото, серебро, алюминий, медь. Реже — никель, платина, палладий, родий. Для изготовления резистивпых элементов используются металлы или их сплавы с высоким удельным сопротивлением нихром, тантал, хром, вольфрам, рений, окислы олова, цинка, индия, керметы (например, окись кремния с хромом) и другие материалы. [c.429]

    Дьюары для сквид-систем должны быть достаточно прочными и в то же время легкими кроме того, к ним предъявляются строгие требования с точки зрения минимального и правильного использования магнитных и металлических деталей. Эти требования становятся еще более критичными, когда дело касается конструкций, находящихся вблизи приемных катущек магнитометра. В криогенных системах сквидов чаще всего используют неметаллические композиционные материалы из стеклянной, кварцевой или кевларовой ткани, пропитанной эпоксидной смолой. Но поскольку стеклопластик (композиционный материал из стеклоткани и эпоксидной смолы) парамагнитен, его не следует применять для изготовления каркасов измерительных катушек и сосудов для гелия. Иногда наружную оболочку дьюара и внутренний сосуд изготавливают, наматывая на болванку нить из стекла или синтетического волокна с одновременной пропиткой эпоксидной смолой. Более удобен и общепринят метод склейки дьюаров из стеклопластиковых пластин и труб с помощью эпоксидной смолы. Металлические детали делают из алюминиевых сплавов (6061), нержавеющей стали (321) и сплавов меди с никелем, бериллием или кремнием. Из этих материалов нержавеющая сталь обладает наименьшей теплопроводностью, но наибольшей остаточной намагниченностью. Поскольку эта сталь обладает также способностью сильно намагничиваться при сварке и пайке серебром, не рекомендуется помещать детали из нее в чувствительной зоне магнитометра вблизи сквида. Нержавеющую сталь часто используют для изготовления горловины дьюара, поскольку при этом существенно уменьшается поступление тепла и снимается проблема диффузии гелия в вакуумное пространство дьюара. Сплавы кремний - медь применяют при конструировании высокочастотных экранов и изготовлении сосудов для гелия там, где можно использовать зависимость электропроводности этих сплавов от состава. [c.174]

    При травлении погружением на 1—30 с реактив выявляет микроструктуру сплавов меди, кадмия, никеля, серебра. Контрастно травятся границы зерен и оксидные включения в алюминиевомагние-вых сплавах выявляется интерметаллидная фаза. В двухфазной латуни а-фаза имеет оранжевый оттенок, Р-фаза окрашивается в лимонно-желтый цвет. С увеличением продолжительности травления выявляются фигуры травления на цинке [130]. [c.52]

    При решении вопроса о допустимости контакта между металлами можно также рукоиодствоваться следующими данными. Все металлы разделены на пять групп первая группа магний вторая — п,и1гк, алюминий, кадмий третья — железо, углеродистые стали, свинец, олово четвертая — никель, хром, хромистые стали (Х17), хромоиикелевые стали (Х18Н9) пятая — медноникелевые сплавы, медь, серебро. [c.182]

    Гибкие металлические перегородки особенно пригодны для работы с химически агрессивными жидкостями, при повышенной температуре и в условиях значительных механических напряжений. Они изгота 1Ливаются в виде перфорированных листов, сеток и тканей из углеродистой или нержавеющей стали, меди, латуни, бронзы, алюминия, никеля, серебра и различных сплавов. Пер( юрированные листы используют для разделения суспензий, содержащих грубодисперсные твердые частицы, а также в качестве опорных перегородок для фильтровальных тканей и бумаги. [c.197]

    Однако можно подобрать такой состав электролита, что при определенном режиме работы ванны анодный окислительный процесс будет приводить к образованию гладкой, блестяш,ей поверхности металла. Это — процесс электрохимического полирования [злек-трополировка). При этом можно добиться удаления даже очень мелких шероховатостей размером менее 0,01 мк (глянцевание). Таким путем получают зеркальные поверхности у алюминия, меди, хрома, никеля, серебра, стали и ряда других металлов и сплавов. [c.342]

    Большинство химических элементов являются металлами (см. рис. 53). Многие из них в силу своей химической активности находятся в природе в связанном состоянии, и поэтому до XVIII в. были известны лишь металлы, встречающиеся в самородном состоянии или легко выплавляемые из руд, такие, как золото, серебро, медь, ртуть, свинец, олово, железо и висмут (причем висмут долгое время принимали за разновидность свинца, олова или сурьмы). Использование сплава меди с оловом сыграло важную роль в развитии производительных сил общества и открыло бронзовый век . Совершенствование плавильных печей позволило производить чугун и другие сплавы железа, появление которых явилось новой вехой в создании человеком материальных ценностей. Алюминий, никель, хром, марганец, магний и другие хорошо известные теперь металлы стали получать лишь в конце XIX — начале XX в., а титан — только в середине XX в. [c.390]

    Применение меди, серебра, золота и их соединений. Больше других металлов этой додгруппы, как наиболее доступный металл, используется медь. Электролитически рафинированная медь с содержанием 99,90—99,95% меди используется для изготовления кабелей, проводов, контактов и пр. Сплавы меди с добавками цинка (латунь), никеля (мельхиор, нейзильбер), олово (бронза), бериллия, алюминия и др. находят самое разнообразное применение в судо-, авто-, авиа-и аппаратостроении, для изготовления литых изделий, посуды и пр. [c.357]


Смотреть страницы где упоминается термин серебро сплавы меди сплавы никеля: [c.798]    [c.77]    [c.186]    [c.10]    [c.171]    [c.301]    [c.21]    [c.55]    [c.255]    [c.61]    [c.812]    [c.376]    [c.291]    [c.162]    [c.89]    [c.132]   
Коррозия металлов Книга 1,2 (1952) -- [ c.0 ]

Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Водяной газ, действие на сплавы медь молибден никель серебро тантал

Медь и сплавы никель и сплавы

Медь сплавы

Сплавы никеля

Сплавы никеля Jt И h I Сплав

Хлористый алюминий, действие серебро сплавы меди с цинком сплавы никеля с хромом хромовые покрытия

Хлористый алюминий, действие серебро сплавы меди с цнн ком сплавы никеля с хромом хромовые покрытия

никель сплавы меди сплавы никеля

олово платину сплавы железа с никелем серебро сплавы меди

серебро сплав меди с цинком сплавы никеля тантал

серебро сплавы меди с никелем



© 2025 chem21.info Реклама на сайте