Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отделение алюминия методами осаждения ртути

    Этот метод используют для отделения микроколичеств А1, В, Са, М , Ti, V, XV и РЗЭ при анализе железа, сталей, никеля и других металлов и сплавов. Например, менее 10 г/г РЗЭ в нержавеющей стали отделяли от элементов основы и определяли атомно-эмиссионным методом [451]. Выделение матричных элементов электролизом на ртутном катоде использовано при атомно-абсорбционном определении алюминия в железе и его сплавах [452]. При выделении менее 10 г/г бора из никеля электролизом на ртутном катоде в качестве анода используют саму пробу [453]. Охлаждаемый водой платиновый тигель с небольшим количеством донной ртути служит электролитической ячейкой. Растворение пробы в 0,01 М серной кислоте и осаждение матричного элемента происходит одновременно. При этом не возникает опасности загрязнения материалом анода. Кроме того, загрязнения, обусловленные примесями в самой серной кислоте, меньше, чем в обычном методе, где требуются большие ее количества для растворения металла. После завершения электролиза бор определяют спектрофотометрически. Этот же метод был применен при полярографическом определении до 0,3 10 г/г алюминия в железе [454]. В этом случае в качестве электролита использовали 0,5 М раствор хлорной кислоты. [c.81]


    Осаждение алюминия в виде хлорида. Выделение алюминия в виде гидрата хлорида алюминия обеспечивает при однократном осаждении достаточно полное отделение алюминия от бериллия. Этим методом можно также достигнуть хорошего отделения алюминия от железа, цинка, меди, ртути и висмута и от некоторых других элементов. [c.117]

    Для группового отделения таких небольших количеств ванадия, хрома, молибдена, вольфрама, фосфора и мышьяка, какие встречаются в породах, давно используется способ осаждения их нитратом ртути (1) из растворов, содержащих небольшие количества карбоната натрия . Метод этот применяется после разложения пробы сплавлением ее с карбонатом натрия и селитрой. Осторожно сплавляют 5 г измельченной породы с 20 г карбоната натрия иЗг нитрата натрия. Выщелачивают плав водой, марганец восстанавливают спиртом и затем раствор фильтруют. В том случае, если проба полностью не разложилась или присутствуют большие количества ванадия, осадок прокаливают и сплавление повторяют, а фильтраты объединяют. В раствор вводят разбавленную (1 1) азотную кислоту почти до нейтральной реакции, предварительно устанавливая требуемое для этого количество кислоты на таком же количестве реактивов, какое было израсходовано для разложения пробы. При нейтрализации нельзя переходить за нейтральную точку, так как в кислом растворе хром н ванадий восстанавливаются образующимся в процессе сплавления нн-тритом. Раствор выпаривают почти досуха, разбавляют 100 мл воды, нагревают до перехода в раствор растворимых солей и фильтруют. Остаток кремнекислоты и гидроокиси алюминия обрабатывают фтористоводородной и серной кислотами, выпаривают досуха и сплавляют с карбонатом натрия. Плав растворяют в 100 мл воды, раствор доводят почти до нейтральной реакции азотной кислотой, кипятят несколько минут и фильтруют. Фильтрат присоединяют к основному раствору. После этого в холодный щелочной раствор вводят по каплям почти нейтральный раствор нитрата ртути (I) до прекращения образования осадка. [c.467]

    Электролизом с ртутным катодом из раствора можно эффективно удалять большие количества многих тяжелых металлов, которые нежелательны при анализе. В разбавленном растворе серной кислоты на ртутном катоде осаждаются железо, хром, никель, кобальт, цинк, кадмий, галлий, индий, германий, медь, олово, молибден, рений, висмут, таллий, серебро, золото и металлы платиновой группы (за исключением рутения и осмия) в то же время такие элементы, как алюминий, титан, цирконий, фосфор, ванадий и уран, количественно остаются в растворе Этот метод особенно ценен при определении последней группы элементов в металлургических материалах. Так, электролиз с ртутным катодом обеспечивает превосходное отделение железа, мешающего при определении алюминия в стали. Не всегда легко без остатка выделить осаждаемые элементы. Микрограммовые количества их остаются в растворе даже при условии, что предпринимаются самые тщательные меры. В раствор будут попадать микроколичества ртути, так как она имеет заметную атомную растворимость ( -25 у/л воды при комнатной температуре). По имеющимся данным при концентрациях серной кислоты от 0,1 до 6 н. можно достичь фактически полного электролитического осаждения Си, 2п, Сс1, 1п, Т1, 8п, В1, Ре и, весьма вероятно, также Ag, Аи, Hg и некоторых металлов платиновой группы. При кислотности в пределах 0,1—1,5 н. удается полностью выделить Со и N1. Другие металлы (Оа, Аз, 5е и Сг) можно осадить только из 0,1 н. серной кислоты. Из серной кислоты в пределах концентраций от 0,1—6 н. неполно осаждаются Ое, 8Ь, Те, Мп, Яе и, вероятно. Ни. После проведения [c.43]


    Гравиметрические методы определения. Красный осадок соединения кобальта (III) с 1-нитрозо-2-нафтолом примерного состава Со(СюНб02 )з-пН20 образуется в слабокислых (pH 3.8—4,0), нейтральных и аммиачных растворах. Образовавшееся соединение при подкислении не разрушается. Мешают осаждению кобальта серебро, висмут и олово. Железо и вольфрам можно маскировать фторид-ионом. Не мешают осаждению кобальта равные по содержанию количества никеля, алюминия, кадмия, кальция, магния, бериллия, хрома, свинца, марганца, цпнка, сурьмы, мышьяка, ртути. В присутствии больших количеств никеля проводят переосаждение кобальта. После высушивания при 115°С состав соединения становится постоянным (п = 2), и оно применимо для гравиметрического определения содержания кобальта. В некоторых случаях отделение Со от сопутствующих элементов проводят осаждением в виде кобальтинитрита (гексанитрокобальтата III) каль я  [c.71]

    Для группового отделения таких небольших количеств ванадия, хрома, молибдена, вольфрама, фосфора и мышьяка, какие встречаются в породах, давно используется способ осаждения их нитратом ртути (I) из растворов, содержащих небольшие количества карбоната натрия Метод этот применяется после разложения пробы сплавлением ее с карбонатом натрия и селитрой. Осторожно сплавляют 5 г измельченной породы с 20 3 карбоната натрия и 3 г нитрата натрия. Выщелачивают плав водой, марганец восстанавливают спиртом и затем раствор фильтруют. В том случае, если проба полностью не разложилась или присутствуют большие количества ванадия, осадок прокаливают и сплавление повторяют, а фильтраты объединяют. В раствор вводят разбавленную (1 1) азотную кислоту почти до нейтральной реакции, предварительно устанавливая требуемое для этого количество кислоты на таком же количестве реактивов, какое было израсходовано для разложения пробы. При нейтрализации нельзя переходить за точку нейтральности, так как в кислом растворе хром и ванадий восстанавливаются образующимся в процессе сплавления нитритом. Раствор выпаривают почти досуха, разбавляют 100 мл воды, нагревают до перехода в раствор растворимых солей и фильтруют. Остаток кремнекислоты и гидроокиси алюминия обрабатывают фтористоводород- [c.510]

    При анализе микропримесей иногда определенную ценность представляет операция выделения цинка осаждением в виде сульфида этим методом обычно пользовались до того, пока не был предложен дитизон. Осаждение сульфида цинка легко осуществить в аммиачном растворе, а в присутствии соли винной кислоты можно провести отделение от алюминия, титана и подобных им металлов железо, марганец, никель кобальт и другие металлы, образующие сульфиды, осаждаются вместе с цинком. Осаждение сульфида цинка в очень разбавленных кйслых растворах (операция, успешно осуществляемая в обычном анализе) не является полным в случае микроколичеств без применения носителя. При применении 0,5 мг меди в качестве носителя можно полностью осадить около 0,01 мг цинка из 10 мл ацетатного буферного раствора, нейтрального по метилоранжу В качестве носителя можно использовать также сульфид ртути, который легко удаляется при прокаливании. Небольшие количества меди (несколько миллиграммов) могут быть осаждены из 0,2—0,3 н. раствора соляной кислоты без значительных потерь цинка, однако в случае больших количеств меди значительная часть цинка извлекается из раствора в результате соосаждения или последующего осаждения [c.847]


Смотреть страницы где упоминается термин Отделение алюминия методами осаждения ртути: [c.49]    [c.564]    [c.49]    [c.516]   
Аналитическая химия алюминия (1971) -- [ c.171 ]

Аналитическая химия алюминия (1971) -- [ c.171 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий и ртуть

Алюминий отделение

Метод осаждения

Методы отделения

Методы отделения осаждением

Отделение алюминия методами осаждения

Отделение алюминия осаждением



© 2025 chem21.info Реклама на сайте