Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Интроны также

    Уникальные последовательности генома содержат не только гены, кодирующие белки, но и последовательности ДНК, расположенные между генами, а также в составе интронов, разделяющих участки ДНК, кодирующие полипептиды. Роль некодирующих уникальных последовательностей, составляющих основную часть эукариотического генома, остается до сих пор не выясненной. [c.190]


    По-видимому, два интрона утеряны. Полипептидная последовательность, кодируемая вторым, третьим, пятым и шестым экзонами, содержится также в составе фактора комплемента С9, где она также кодируется отдельными экзонами. Далее расположен район из восьми экзонов, он гомологичен району гена, кодирующему предшественник эпидермального фактора роста. Экзоны 7, 8 и 14 представляют собой повторы, кодирующие по 40 аминокислот и содержащиеся в генах, контролирующих процесс свертывания крови. Затем расположен экзон, кодирующий домен, обогащенный сери-ном и треонином, который является мишенью 0-гликозилирования рецептора. В итоге структура гена рецептора липопротеида низкой плотности в целом наглядно демонстрирует возможность перетасовки экзонов и соответствующих автономных функциональных структур сложной белковой молекулы. [c.194]

    Определение нуклеотидных последовательностей в составе гомологичных генов (например, генов глобинов), кодирующих полипептиды со сходным строением и функцией у одного или разных организмов, показало, что наибольшим изменениям в эволюции подвергались интроны, а не экзоны. В интронах обнаружены встав ки, делеции и другие перестройки, в то время как последователь ности экзонов оказываются значительно более консервативными Изменения в нуклеотидных последовательностях экзонов часто обу словлены лишь отдельными нуклеотидным заменами. Эти наблю дения также можно истолковать в пользу представлений о том, что [c.194]

    Опыты с искусственными генными конструкциями, составленными из отрезков ДНК разного происхождения, выявили существование особого цис-действующего элемента регуляции генов эукариот, получившего название усилителя (энхансера) или активатора транскрипции. Энхансеры представлены короткими последовательностями ДНК, состоящими из отдельных элементов (модулей), включающих десятки нуклеотидных пар. Модули могут представлять собой повторяющиеся единицы. Энхансер увеличивает эффективность транскрипции гена в десятки и сотни раз. Впервые энхансеры были обнаружены в составе геномов животных ДНК-содержащих вирусов ( У40 и полиомы), где они обеспечивают активную транскрипцию вирусных генов. Извлеченные из вирусных геномов и включенные в состав искусственных генетических конструкций, они резко усиливали экспрессию ряда клеточных генов. Позднее были обнаружены собственные энхансеры генов эукариотической клетки. Особенность энхансеров состоит в том, что они способны действовать на больших расстояниях (более чем 1000 п. н.) и вне зависимости от ориентации по отношению к направлению транскрипции гена. Оказалось, что энхансеры могут располагаться как на 5 -, так и на З -конце фрагмента ДНК, включающего ген, а также в составе интронов (рис. 112, а). Например, энхансеры были выявлены в районе 400 п. н. перед стартом транскрипции генов инсулина и химо-трипсина крысы. В случае гена алкогольдегидрогеназы дрозофилы энхансер был локализован за 2000 п. н. перед промотором. Энхансеры обнаружены на 3 -фланге гена, кодирующего полипептидный гормон-плацентарный лактоген человека, а также в составе интронов генов иммуноглобулинов и коллагена. [c.203]


    Например, если экспрессируется класс А, то вырезаются все фрагменты ДНК, соответствующие классам М, D, G, Е, и образуется активный фрагмент ДНК, включающий в себя вариабельные гены, а также ген, кодирующий константную а-цепь. Если же клетка должна экспрессировать антитело, допустим, класса Е, то под влиянием Т-клеток и цитокинов происходит переключение классов. Перед каждым геном тяжелых цепей (кроме D-класса) имеется сайт переключения. При наличии сигнала от Т-клеток или цитокинов эти участки рекомбинируют друг с другом, а промежуточные гены (соответствующие цепям С , g и С ) вырезаются. Удаление промежуточных генов происходит следующим образом. При получении сигнала на переключение соответствующие участки рекомбинируют, при этом образуется петля цепи ДНК, которая вырезается эндонуклеазами. Сайты рекомбинации расположены в зонах интронов и в результате сплайсинга также удаляются. [c.488]

    При использовании метода картирования К-петель РНК замещает одну цепь ДНК, гибридизуясь с участками ДНК по обе стороны от промежуточной последовательности. Но сама промежуточная последовательность остается неизменной, сохраняя исходное двухцепочечное строение. В результате образуется структура, приведенная на рис. 20.4, где два участка, кодирующие РНК, в гибриде объединены, как это видно по двум вытесненным из гибрида одноцепочечным петлям ДНК. В месте соединения этих петель наружу вытесняется двухцепочечная петля ДНК, соответствующая промежуточной последовательности. В приведенном на рис. 20.5 примере виден единственный интрон р ° -глобинового гена мыши. (В этом гене также имеется и второй интрон, размеры которого слишком малы для того, чтобы он был виден в электронный микроскоп см. ниже.) [c.247]

    Другая возможность состоит в том, что в состав гена входит промежуточная последовательность (или последовательности), имеющая сайт узнавания рестриктазы. Действительно, наличие каждого интрона, содержащего такой сайт, приведет к образованию дополнительного фрагмента. (Противоположный результат, когда получают один фрагмент, не доказывает отсутствия промежуточной последовательности, поскольку интрон не обязательно содержит сайт рестрикции. Это также не исключает возможности существования небольшого числа расположенных рядом копий.) [c.251]

    Поэтому фрагмент С не будет обнаружен среди последовательностей, полученных при рестрикции ДНК данным ферментом. Такого рода случайности можно избежать, используя несколько ферментов и составляя карту таким образом, чтобы место соединения каждой пары соседних фрагментов также, было бы целиком представлено в каком-либо другом фрагменте. Этот метод может включать использование в качестве зондов участков интронов. [c.252]

Рис. 20.17. Масштабные карты двух генов курицы показывают, что экзоны в основном представляют собой участки сравнительно небольшого размера (порядка 100 п. п.), связанные сушественно более длинными интронами (хотя некоторые экзоны также имеют довольно большую длину). Рис. 20.17. Масштабные карты <a href="/info/1696521">двух</a> <a href="/info/1409172">генов курицы</a> показывают, что экзоны в основном представляют <a href="/info/1795776">собой</a> участки сравнительно <a href="/info/1373070">небольшого размера</a> (порядка 100 п. п.), связанные сушественно более длинными интронами (хотя некоторые <a href="/info/1324805">экзоны также</a> имеют довольно большую длину).
    Было высказано предположение, что экзоны кодируют определенные автономные элементы укладки полипептидной. цепи, представляющие собой функциональные сегменты белковой молекулы, которые сортируются в процессе эволюции. Если процессы такой перетасовки генетического материала, механизмы которых не рассматриваются, идут по районам интронов, то структура экзонов не изменяется и, следовательно, не нарушаются функциональные свойства отдельных белковых доменов. Экзоны могут соответствовать участкам доменов или отдельным белковым доменам, т. е. тем участкам белковой молекулы, которые можно выделить как пространственно делимые структуры, обладающие определенной биологической функцией. Установление раз.меров экзонов во многих генах показало, что главный класс экзонов имеет раз.меры около 140 п. и., что соответствует 40—50 а. о. в молекуле белка. Большая часть белковых доменов, содержащих в среднем 100—130 а. о., складывается из нескольких элементов вторичной структуры ( су-первторичных структурных единиц), кодируемых отдельными экзонами. М-терминальный участок из нескольких гидрофобных аминокислот (сигнальный пептид) секреторных белков, как правило, также кодируется отдельным экзоном. [c.192]

    Геном млекопитающих содержит несколько разных семейств коротких повторов. Короткие повторы у птиц и амфибий изучены значительно хуже. Число копий коротких повторов, например наиболее изученных повторов Alu-семейства у человека, составляет 3-10 , что соответствует 5—6% массы ДНК клетки. Такие повторы рассеяны по геному и получили название вездесущих. Повторы Alu могут находиться в интронах, на 5 -флангах генов и, наконец, в составе З -нетранслируемого участка мРНК- Нуклеотидная последовательность Alu-повтора гомологична последовательности отдельных участков 7S РНК. Структура 7S РНК достаточно консервативна у позвоночных, а гомологии в нуклеотидной последовательности прослеживаются и с 7S РНК насекомых, Поэтому семейства коротких повторов, присутствующие у разных видов, предшественником которых служила 7S РНК, также могут обладать достаточной гомологией. В то же время семейства коротких повторов, как и длинных, характеризуются видоспецифичностью, обусловленной амплификацией той или иной копии клеточных РНК, которые к тому же могли быть по-разному модифицированы в результате процессинга. Локализация ретропозонов, внедрившихся в отдельные сайты генома у предков млекопитающих, может, по крайней мере, частично сохраняться в процессе дальнейшей эволюции. Например, места локализации Alu-подобного семейства в межгенных про.межутках кластера глобиновых генов оказались достаточно сходными у мышей и приматов. [c.226]


    Вырезание интрона происходит очень точно это обеспечивается наличием сложной вторичной и третичной структуры РНК. Нуклеотидная последовательность интрона с учетом комплементарных взаимодействий отдельных участков может быть представлена в виде достаточно сложной структуры (рис. 99). Сходную структуру имеет интрон предшественника рРНК митохондрии. Замены отдельных нуклеотидов в составе интрона обнаруживают необходимость отдельных элементов его структуры для самосплайсинга. Например, нарушение комплементарности в районе А препятствует сплайсингу. Оказывается, что для правильного сплайсинга необходимы также комплементарные взаимодействия нуклеотидов (вне плоскости рисунка ) в элементах Б и В. Замена нуклеотида в районе Б, нарушившая комплементарность и сплайсинг, может быть компенсирована другой нуклеотидной заменой в районе В, если она восстановит комплементарные взаимодействия. Каталитические свойства определяются особой структурой РНК, создаваемой в результате комплементарных взаимодействий. [c.167]

    Укажем также на весьма интересные и новые данные о существовании в структуре мРНК-предшественника, помимо экзонов и интронов, особых, так называемых альтернативно сплайсируемых, последовательностей. Выявлены примеры неоднозначного протекания сплайсинга для ряда генов. Результат альтернативного сплайсинга-появление нескольких продуктов при экспрессии одного гена. Так, получены доказательства, что экспрессия [c.492]

    В нетранскрибируемых последовательностях генома перед экзон-интронами открыты специфические участки, названные промоторами, а также энхансерами (повышающие уровень транскрипции) и силан-серами (ослабляющие уровень транскрипции). При взаимодействии с белками они выполняют функции регуляторных сигналов при транскрипции. Этот способ регуляции широко используется клетками эукариот как в процессах дифференцировки, так и при индукции репрессии (см. главу 14). [c.493]

    Однако левый экзон, даже не будучи связан ковалентно с остальной частью предшественника, остается вблизи этой части и участвует во второй стадии, также представляющей собой реакцию переэтерификации. При этом образуется связь между 3 -концом левого экзона и 5 -концом правого. В итоге интрон выщепляется в виде производного, содержащего дополнительный остаток гуанозина на 5 онце, согласно уравнению [c.220]

    Поскольку дрожжи представляют собой эукариотический организм, можно было бы ожидать, что гены различных эукариот, в том числе и те, которые содержат интроны, будут корректно экспрессироваться в дрожжевых клетках. Однако это не так. Например, экспрессия генов -глобнна кролика в дрожжах не происходит благодаря некорректности транскрипции и последующего сплайсинга РНК. Тем не менее, применяя приемы, аналогичные использовавшимся при клонировании в бактериях, удается достичь синтеза чужеродных белков в дрожжевых клетках. Такие клетки, подобно В. subtilis, секретируют значительное количество белков во внеклеточную среду, что используют также для секреции чужеродных белков. С этой целью к экспрессируемому гену присоединяется участок, кодирующий сигнальный пептид, обусловливающий секрецию и отщепляемый в ее процессе. В результате в клетке синтезируется белок, содержащий на N-конце сигнальный пептнд. Этот белок секретируется в окружающую среду. Таким образом были получены, например, штаммы дрожжей, секретирующие интерферон человека. [c.440]

    В хромосомных ДНК прокариотических и эзгкариотических клеток имеются также контролирующие или так называемые "прыгающие" подвижные гены — транспозоны (Тп), впервые открытые Б Мак-Клинток в 1940 г у кукурузы Они находятся на значительном расстоянии от других генов, на которые оказывают влияние Благодаря мутациям, названным "транспозонными взрывами", возможно массовое и в известной мере направленное перемещение генетических элементов Транспозоны способны реплицироваться и внедряться (инсерция) в виде одной из копий в новое место генома (ДНК ядра) У бактерий преобладающая часть транспозонов кодирует фермент транспозазу, катализирующую реакцию встраивания транспозона в ДНК В последнее время их отождествляют с интронами, рассмотренными выше [c.164]

    Многие эукариотические гены (может быть, даже большинство их) обладают весьма загадочной структурной особенностью, которая состоит в том, что в их нуклеотидную последовательность вставлен участок ДНК, не кодирующий аминокислотную последовательность полипептидного продукта. Эти нетрансли-руемые вставки прерывают строго кол-линеарное соответствие между нуклеотидной последовательностью остальных участков гена и аминокислотной последовательностью полипептида, кодируемого этим геном (рис. 27-29). Такие не-транслируемые участки ДНК в генах называют вставочными последовательностями, или нитронами, тогда как участки гена, кодирующие аминокислотную последовательность полипептида, называют экзонами. Хорошо известным примером может служить ген, кодирующий единственную полипептидную цепь яичного белка,-овальбумина. На рис. 27-29 видно, что в этом гене присутствуют шесть интронов, которые разделяют ген овальбумина на семь экзонов. Видно также, что интроны в этом гене гораздо длиннее экзонов-суммарная длина всех интронов составляет 85% общей длины ДНК гена. За немногими исключениями, все изученные к настоящему времени эукариотические гены содержат интроны, которые различаются по числу, по месту расположения, а также по тому, какую часть общей длины гена они занимают. Например, ген сывороточного альбумина содержит 6 интронов, ген белка кональбумина куриных яиц -17 интронов, а ген коллагена-свыше 50 интронов. Исключение составляют гены гистонов, которые, по-видимому, не содержат интронов. [c.884]

    Сплайсинг генов. Ферментативное присоединение одного гена или части гена к другому, а также процесс удаления интронов и соединение экзонов при синтезе мРНК. [c.1019]

    Одна из возможных функций интронов была обнаружена, когда оказалось, что из одной и той же мРНК в разных клетках могут быть удалены разные интроны. Таким образом, ген может иметь альтернативные интроны и кодировать различные, хотя и сходные белки. Это увеличивает его потенциальное использование. Примером служит ген кальцитонина. Этот ген может продуцировать две разные формы мРНК в зависимости от того, какие интроны бьши удалены. Одна из них образуется в щитовидной железе и кодирует синтез белка кальцитонина, состоящего из 32 аминокислот. Кальцитонин — это гормон, понижающий уровень кальция в крови. Другая форма мРНК синтезируется в гипоталамусе и кодирует белок, состоящий из 37 аминокислот этот белок, названный пептидом, связанным с геном кальцитонина, сходен с кальцитонином и обладает сильным сосудорасширяющим действием. Он вьщеляется также из нервных окончаний в некоторых частях периферической нервной системы. [c.177]

    Все классы генов могут иметь прерывистое строение все гены, кодирующие белки, а также гены, кодирующие рРНК, и гены, кодирующие тРНК. Интроны обнаружены также в митохондриальных генах дрожжей и хлоропластных генах. Прерывистые гены, по-видимому, присутствуют в клетках эукариот всех классов, хотя их содержание варьирует. Например, их доля среди ядерных структурных генов позвоночных может превышать таковую у грибов. [c.253]

    Универсальная последовательность обнаружена в ядерных генах многих эукариот. Насколько нам известно, она имеется у всех высщих эукариот, поэтому можно предполагать существование общего механизма удаления интронов из РНК. Однако правило СТ-АС не распространяется на интроны митохондрий и хлоропластов, а также на гены дрожжевой тРНК по крайней мере в этих случаях механизмы сплайсинга могут иметь существенные различия (гл. 26). [c.256]

    Мутации в кластерах box 9 и box 2 также не комплементируют мутации в других кластерах. Следовательно, по такому генетическому критерию они неотличимы от мутаций, затрагивающих экзоны. Однако их биохимические свойства различны, на что указывает нарущение синтеза соответствующей нормальной мРНК. При анализе нуклеотидной последовательности ДНК обнаруживается, что оба этих кластера находятся в области 14. Мутации кластера box 9 затрагивают последовательность ДНК длиной 8 п.п., находящуюся на 350 п.н. правее границы с В4. Мутации кластера box 2 смещены к другому концу интрона и находятся на расстоянии 25 п. н. левее границы с В5. Обе группы мутаций препятствуют объединению участков В4 и В5 в результате удаления области 14 при сплайсинге. Существование этих мутаций указывает на два важных обстоятельства общего характера. Во-первых, мутации, затрагивающие специфические сайты, могут препятствовать узнаванию определенньрс границ сплайсинга, причем такие сайты могут быть достаточно удалены от самих границ. Во-вторых, с помощью генетических методов анализа эти мутации нельзя отличить от мутаций, затрагивающих кодирующие белок участки. (Точно так же неразличимы классические i u -мутации, затрагивающие промоторы или операторы и их структурные гены см. гл. 14.) [c.259]

    Какова же структура РНК-матуразы Имеется косвенное указание на то, что ее трансляция инициируется не внутри интрона, а при считывании информации со второго экзона. Это может происходить при трансляции показанного на рис. 20.23 первого промежуточного продукта сплайсинга. РНК образуется просто путем удаления первого интрона. Это приводит к объединению первого и второго экзонов и образованию рамки считывания, захватывающей также часть второго интрона. Полная длина рамки считывания-424 кодона, и при ее трансляции будет образовываться белок, состоящий из 144 N-концевых аминокислот цитохрома Ь и 279 аминокислот, кодируемых интроном. [c.260]


Смотреть страницы где упоминается термин Интроны также: [c.192]    [c.192]    [c.494]    [c.166]    [c.167]    [c.175]    [c.177]    [c.193]    [c.231]    [c.410]    [c.166]    [c.175]    [c.177]    [c.193]    [c.490]    [c.493]    [c.297]    [c.506]    [c.989]    [c.1002]    [c.257]   
Гены (1987) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте