Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

РНК синтез и перенос генетической информации

    Буквально все имевшиеся тогда факты убеждали меня в том, что ДНК служит матрицей, на которой образуются цепочки РНК. В свою очередь, цепочки РНК были вполне вероятным кандидатом на роль матриц для синтеза белка. Какие-то неясные данные, полученные на морских ежах, истолковывались как доказательство превращения ДНК в РНК, но я предпочитал доверять другим экспериментам, свидетельствовавшим о том, что образовавшиеся молекулы ДНК весьма и весьма стабильны. Идея бессмертия генов была похожа на правду, и я повесил на стену над своим столом листок с надписью ДНК->РНК->Белок. Стрелки обозначали не химические превращения, а перенос генетической информации от последовательности нуклеотидов в ДНК к последовательности аминокислот в белках. [c.89]


    Вскоре после открытия и окончательного признания генетической роли ДНК (1944—1953) стало ясно, что ДНК не является непосредственной матрицей для синтеза полипептидных цепей белков. С другой стороны, целый ряд ранних наблюдений приводил к мысли о непосредственной связи РНК с синтезом белков в клетке. По-видимому, отсюда родилось представление о том, что РНК должна быть посредником, осуществляющим перенос генетической информации от ДНК к белкам, и, следовательно, что именно РНК может быть [c.9]

    На основании работ по синтезу индуцируемых ферментов у мутантов кишечной палочки совместно с Ж- Л. Моно выдвинул (1961) гипотезу о переносе генетической информации при участии информационной рибонуклеиновой кислоты и о механизме генетической регуляции синтеза белка у бактерий (концепция оперона). [c.187]

    Основное направление научных работ—изучение механизма функционирования бактериальных биокатализаторов. Разработал (1950— 1960) теорию переноса генетической информации с ДНК на рибосомы при участии информационной РНК. На основании работ по синтезу индуцируемых ферментов у мутантов кищечной палочки совместно с Ф. Жакобом выдвинул (1961) гипотезу о переносе генетической информации при участии информационной РНК и о механизме генетической регуляции синтеза белка у бактерий (концепция оперона). [c.343]

    Тесная связь между синтезом РНК и синтезом белка привела к предположению, что генетическая информация ДНК передается на РНК, которая при синтезе белка действует в качестве матрицы. Возможно, однако, что в некоторых случаях ДНК непосредственно служит матрицей при синтезе белка. Из этого следует, что РНК переносит генетическую информацию и существует механизм, который позволяет определенным образом отбирать и располагать аминокислоты вдоль молекулы РНК. Исследования, проведенные с вирусом табачной мозаики, показывают, что почти чистые препараты вирусной РНК могут передавать генотип этого вируса. В результате изучения специфичных аминоацил-з-РНК-синтетаз точно установлено, что эти ферменты могут катализировать образование специфичных соединений с s-PHK для каждой белковой аминокислоты. Специфичность этих соединений должна обеспечить их присоединение только к соответствующему месту на матрице. Получены данные, что такая специфичность обусловлена последовательностью нуклеотидов в s-PHK. Поэтому можно предположить, что каждое соединение аминокислота — s-PHK присоединяется к матричной РНК водородной связью. [c.486]

    Мысль о том, что какой-то вид РНК несет генетическую информацию для биосинтеза белка, была первоначально высказана на основании того, что у эукариот почти вся ДНК сосредоточена в ядре, в то время как синтез белка протекает главным образом в цитоплазме на рибосомах. Следовательно, какая-то макромолекула, отличная от ДНК, должна переносить генетическую информацию от ядра к рибосомам. Логическим кандидатом на эту роль была РНК, поскольку ее обнаружили и в ядре, и в цитоплазме. Было также отмечено, что начало синтеза белка в клетке сопровождается увеличением содержания РНК в цитоплазме и увеличением скорости ее обновления. Эти и другие наблюдения привели Френсиса Крика к предположению (ставшему частью центральной догмы молекулярной генетики), что РНК вьшолняет функцию переноса генетической информации от ДНК к рибосомам, где происходит биосинтез белка. Позже, в 1961 г., Франсуа Жакоб и Жак Моно предложили название матричная РНК для той части клеточной РНК, которая переносит генетическую информацию от ДНК к рибосомам, т. е. к месту, где эти молекулы-переносчики служат матрицами для биосинтеза полипептидных цепей с определенной последовательностью аминокислот. [c.910]


    Работа Чаргаффа открыла возможность сформулировать теорию, объясняющую, каким образом ДНК может осуществлять перенос генетической информации в опыте с трансформацией. Теперь уже невозможно установить, кто фактически первый высказал эти идеи. Теория появилась после 1950 г. и была окончательно принята многими молекулярными генетиками уже к 1952 г. Основное положение этой теории сводилось к следующему если молекула ДНК содержит генетическую информацию, то последняя определяется не чем иным, как специфической последовательностью четырех нуклеотидных оснований в полинуклеотидной цепи. Иными словами, молекула ДНК — это апериодический кристалл Шредингера, в котором четыре основания — это то небольшое число изомерных элементов , чья точная последовательность представляет наследственный код (см. гл. I). Но поскольку информация, содержащаяся в генах (как было показано в гл. V), должна определять последовательность аминокислот в полипептидной цепи, нетрудно было сообразить, что смысл наличия в ДНК последовательностей из четырех нуклеотидных оснований, составляющих ген, состоит в том, чтобы определять последовательность аминокислот белковой молекулы, синтез которой контролируется этим геном. Такое представление давало возможность объяснить мутации на молекулярном уровне — как изменение в последовательности нуклеотидов в ДНК. [c.163]

    Известны три вида процессов, в рамках которых осуществляется специализированный перенос информации (см. рис. 11.1). Один из них, перенос информации от РНК к РНК, удается зафиксировать только в клетках, зараженных вирусами, генетический материал которых представляет собой РНК. Это, например, вирус табачной мозаики (ВТМ) и многие другие вирусы растений, РНК-содержащие бактериофаги и некоторые вирусы животных, такие, как полиовирусы. Эти вирусные геномные РНК, одноцепочечные или двухцепочечные, обязательно несут гены, кодирующие специфические РНК-репликазы, т.е. ферменты, которые по РНК-матрице могут синтезировать комплементарные молекулы РНК. Эти молекулы в свою очередь могут служить матрицами для аналогичного синтеза копий родительских цепей РНК. Перенос генетической информации от РНК к РНК также основан на принципе комплементарности оснований в родительской и дочерней цепях РНК. [c.49]

    Генетическая информация закодирована в последовательности оснований, располагающихся вдоль цепи ДНК. При каждом делении клетки эта информация копируется и переносится в дочернюю клетку. Далее на основе этой информации в клетках осуществляется синтез соответствующих белков. Каждый ген в молекуле ДНК содержит инструкции , необходимые для синтеза одного белка. [c.539]

    Короче говоря, информационная РНК представляет собой метаболически активную, короткоживущую форму комплементарной РНК, образующуюся на ДНК клетки при участии ДНК-зависимой РНК-полимеразы т г-РНК переносит информацию от ДНК, т. е. от носителя генетической информации, к рибосомам, с которыми во время белкового синтеза она находится в тесном контакте. [c.244]

    Роль в живых организмах Хранят и передают генетическую информацию Копируют генетическую информацию переносят ее к месту синтеза бежа участвуют в процессе синтеза белка [c.720]

    Проблема внутриклеточной регуляции биосинтеза белков и нуклеиновых кислот, развивающаяся в последние годы, быстро стала одним из важнейших направлений в исследованиях. С развитием науки становится более конкретным представление о том, что специфическая нуклеотидная последовательность молекулы ДНК определяет структурную и биологическую специфичность синтезируемых в клетке белков. Специфическая структура ДНК обеспечивает точную генетическую (наследственную) передачу информации из поколения в поколение, от клетки к клетке. От ДНК эта информация в процессе жизнедеятельности каждой клетки передается через РНК белкам, а белки обусловливают в конечном счете все биологические свойства. В настоящее время вскрываются конкретные формы записи наследственной информации в цепях ДНК и механизмы переноса этой информации в места белкового синтеза через информационную РНК в рибосомы. Выясняются ранее неизвестные механизмы индукции и репрессии ряда белков в клетках. Все эти успехи являются результатом совместных усилий представителей многих наук — химии, генетики, цитологии, биофизики, биохимии, эмбриологии и т. п. Поэтому схватить вопросы биосинтеза белка и механизмы регуляции во всей их широте и многообразии чрезвычайно трудная задача. [c.294]

    Транскрипция - синтез РНК на основе ДНК, другими словами - процесс переноса генетической информации от ДНК к РНК. Все виды РНК - мРНК, рРНК и тРНК синтезируются в соответствии с последовательностью оснований в ДНК, служащей матрицей. Транскрибируется одна цепь ДНК - главная (+), или цепь 5 —>3.  [c.56]

    Моно [Monodl Жак Люсмн (1910— 1976). Французский биокимик и микро-био/10Г Окончил Парижский университет (1934), работал там же (с 1959 г.— профессор). Совместно с Ф. Жакобом высказал гипотезы о переносе генетической информации и механизме генетической регуляции синтеза белка в бактериальных клетках. Разработал теорию роста и развития бактерий, доказал возможность управления этим ростом. Лауреат Нобелевской премии по физиологии и медицине (1965, совместно с Ф. Жакобом и А. М. Льво- [c.185]


    Тем не менее, следует особо выделить методы клеточной и генной инженерии, когда в экспериментальных условиях удается создавать клетки с заведомо известными свойствами Так осуществлены соматическая гибридизация клеток картофеля и томата (гибрид назван "помато"), перенос генетической информации о синтезе человеческого или животного гормона инсулина в бактериальные клетки (кишечной палочки), способных затем продуцировать полипептидные цепи инсулина [c.41]

    Репликация, или самоудвоение присуще ДНК и РНК, то есть в таких случаях происходит перенос генетической информации соответственно от ДНК к ДНК или, например у ряда вирусов, от РНК к РНК Репликация осзтцествляется полуконсервативным способом, когда двухспиральная ДНК деспирализуется и каждая нить индуцирует синтез комплементарной себе нити при участии ДНК- или РНК-полимеразы [c.166]

    Относительно РНК удалось выяснить, что это вещество синтезируется при участии ДНК хромосомы и осуществляет перенос генетической информации из ядра в цитоплазму, в особые цито-пла.зматические гранулы рибосомы, в которых локализован синтез белков. Одновременно другой специальный тип РНК с низким молекулярным весом и хорошей растворимостью осуществляет транспорт строительных материалов, т. е. аминокислот, внутрь рибосом, т. е. к месту синтеза белков. Показано, следовательно, что молекулы РНК разного типа — это орудия, непосредственно участвующие в реакциях синтеза белка в клетке. [c.8]

    Это открытие сразу прояснило механизм удвоения, репликации , генов через образование комплементарных пар О—С и А—Т (О — дезоксигуаниловая, С — деокси-цитидиловая, А — дезоксиадениловая, Т — тимидиловая кислоты). Стал ясен молекулярный механизм наследования Поэтому 1953 г. считают обычно годом рождения молекулярной биологии. Примерно в это же время сформировались идеи о том, что перенос генетической информации от ДНК к белку идет через РНК, т. е. в клетке существует информационная цепочка ДНК- РНК- белок. Эти представления были подкреплены выделением ферментов синтеза ДНК по матрице ДНК и синтеза РНК по матрице ДНК, т. е. ДНК-зависимых ДНК-полимеразы и РНК-полимеразы. [c.6]

    При транскрипции генетическая информация одного или нескольких генов (участков ДНК) копируется и переносится на мРНК. Молекула мРНК затем идет в цитоплазму, связывается с рибосомой и образует матрицу для синтеза полипептидной цепи. С молекулой мРНК связано множество рибосом, образующих подобие ожерелья. Образуется структура, называемая полирибосомой и полисомой. [c.393]

    Существует мнение, что процесс биологического старения вызывается тем, что генетическая информация прн воспроизведении ДИК и болковом синтезе во все возрастающей мере переносится с ошибками. [c.668]

    Во время роста в клетке имеется большое количество промежуточных и лабильных веществ. Современные методы исследования клеток, фракционирование, микроанализ составных частей, хроматографическое разделение и характеризация нуклеиновых кислот, авторадиография, использование радиоактивной метки и, для клеток с хорошо определенными ядрами, сравнение целых и энуклеированных клеток — все это позволило накопить множество фактов, на основании которых был создан ряд широко обсуждаемых в литературе теорий. В этих теориях фигурирует несколько различных типов РНК одни синтезируются в ядре и мигрируют к рибосомам, другие имеют низкий молекулярный вес некоторые относительно устойчивы, другие имеют малую продолжительность жизпи. Основное внимание в обсуждении обращено сейчас на чтение , перенос и транскрипцию генетической информации. Но в то же время все это связано со сложной системой растущих макромолекул. Большой интервал молекулярных весов, лабильность и необычайная реакционная спо собность — все это заставляет думать о растущих цепях, длина которых меняется и варьирует в широких пределах. Короткожи-вущая мессенджер — РНК действует, как постулируется, в качестве матрицы для синтеза белка на рибосомах, принося информацию от ДНК, тогда как другое лабильное вещество — РНК — переносчик действует как адаптер, ответственный за прикрепление нужной аминокислоты на нужное место. Однако все движение взад и вперед этих лабильных соединений сопряжено с постоянным ростом огромной стабильной макромолекулы. [c.529]

    Биологическая информация хранится в клетке в виде последовательного расположения оснований в молекуле ДНК. В процессе ее удвоения, или репликации (стр. 194), воспроизводятся точные копии ДНК, которые и осугцествляют передачу информации о наследуемых свойствах. Затем происходит транскрипция, во время которой генетическая информация переносится от ДНК на комплементарную, или информационную, РНК. И наконец, в ходе белкового синтеза генетическая информация т.ранслируется с четырехбуквенного языка информационной РНК на двадцатибуквенный язык белков [111]. Биосинтез белка подробно разбирается в многочисленных обзорах [1—19, 90, 118]. Здесь же мы коснемся его кратко и лишь в той мере, в какой это необходимо, чтобы рассмотреть роль нуклеиновых кислот в этом процессе. [c.264]

    ДНК трудно приписать роль непосредственного участника синтеза белков (в том числе ферментов), так как этот синтез в большинстве случаев происходит вне ядра клетки, в цитоплазме, где ДНК отсутствует. Действительно, было установлено, что синтез белка может происходить в отсутствие клеточного ядра. Вследствие этого можно сделать вывод, что генетическая информация должна переда-, ваться от ДНК каким-либо другим веществам, которые переносят ее от ядра к тем участкам в цитоплазме, где происходит синтез белка. Сразу же возникает вопрос о природе этих веществ. В настоящее время выяснено, что ими являются рибонуклеиновые кислоты (РНК) — полимерные молекулы, сходные по структуре с ДНК, за исключением того, что о-2-дезоксирибофураноза заменена в них D-ри- [c.141]

    Источник РНК, т. е. место, где происходит синтез РНК, еще не идентифицирован, но все имеющиеся данные показывают, что рибосомальная, матричная и транспортная РНК синтезируются с участием ДНК- Фермент РНК-полимераза, используя ДНК в качестве шаблона и четыре трифосфорибонуклеотида (АТФ, ГТФ, ЦТФ и УТФ) в качестве субстратов, ведет синтез полирибонуклеотидов, имеющих последовательность оснований, комплементарную последовательность шаблонной ДНК. Таким образом, генетическая информация передается по наследству в форме полидезоксирибонуклеотидов, а затем переписывается на полирибонуклеотиды, после чего переносится на полипептиды. [c.393]

    Хотя структура полинуклеотидов хорошо приспособлена для хранения и передачи (репликации) информации, каталитические возможности молекул РНК. по-видимому, слишком ограничены, чтобы обеспечить все функпии современной клетки. Большая универсальность присуща полипептидам, они состоят из аминокислот с химически разнообразными боковыми цепочками и способны принимать разные пространственные формы, которые насыщены реакционноспособными участками. Свойства полипептидов делают их идеально подходящими для выполнения широкого круга структурных и функциональных задач. Даже полипептиды со случайной последовательностью, возникавшие под действием пребиотических синтетических механизмов, видимо, имели каталитические свойства и, в частности, могли облегчать репликацию молекул РНК. Полинуклеотиды, способствуюшие синтезу полезных полипептидов в своем окружении, должны были приобрести большое преимущество в эволюционной борьбе. Но каким образом полинуклеотиды могли бы осуществлять подобный контроль Как информация, закодированная в их последовательности, может определять последовательность полимеров иного типа Ясно, что полинуклеотиды должны действовать как катализаторы для сборки отобранных аминокислот. У современных организмов согласованная система молекул РНК направляет синтез полипептидов, т. е. синтез белка, однако этот процесс идет при участии других белков, синтезированных заранее. Биохимический аппарат, осушествляюший синтез белка, чрезвычайно сложен. Молекулы РНК одного типа содержат генетическую информацию о последовательности соответствующего полипептида. Роль других молекул РНК заключается в связывании определенной аминокислоты и переносе ее к месту сборки полипептидной цепи. Основой взаимодействия этих двух типов молекул РНК является комплементарность их оснований, что позволяет последовательности нуклеотидов информационной РНК направлять включение определенных аминокислот, доставляемых молекулами транспортной РНК, в растушую полипептидную цепь. Предшественники этих двух типов молекул РНК, по-видимому, направляли первый синтез белка без помощи белков (рис. 1-7, В). [c.18]


Смотреть страницы где упоминается термин РНК синтез и перенос генетической информации: [c.488]    [c.41]    [c.115]    [c.94]    [c.37]    [c.118]    [c.79]    [c.89]    [c.37]    [c.65]    [c.94]    [c.297]    [c.286]    [c.287]    [c.465]    [c.500]    [c.153]    [c.529]    [c.444]   
Современная генетика Т.3 (1988) -- [ c.35 , c.36 ]




ПОИСК





Смотрите так же термины и статьи:

Информация



© 2025 chem21.info Реклама на сайте