Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки синтез и перенос генетической информации

    Генетическая информация закодирована в последовательности оснований, располагающихся вдоль цепи ДНК. При каждом делении клетки эта информация копируется и переносится в дочернюю клетку. Далее на основе этой информации в клетках осуществляется синтез соответствующих белков. Каждый ген в молекуле ДНК содержит инструкции , необходимые для синтеза одного белка. [c.539]


    Буквально все имевшиеся тогда факты убеждали меня в том, что ДНК служит матрицей, на которой образуются цепочки РНК. В свою очередь, цепочки РНК были вполне вероятным кандидатом на роль матриц для синтеза белка. Какие-то неясные данные, полученные на морских ежах, истолковывались как доказательство превращения ДНК в РНК, но я предпочитал доверять другим экспериментам, свидетельствовавшим о том, что образовавшиеся молекулы ДНК весьма и весьма стабильны. Идея бессмертия генов была похожа на правду, и я повесил на стену над своим столом листок с надписью ДНК->РНК->Белок. Стрелки обозначали не химические превращения, а перенос генетической информации от последовательности нуклеотидов в ДНК к последовательности аминокислот в белках. [c.89]

    Роль в живых организмах Хранят и передают генетическую информацию Копируют генетическую информацию переносят ее к месту синтеза бежа участвуют в процессе синтеза белка [c.720]

    Вскоре после открытия и окончательного признания генетической роли ДНК (1944—1953) стало ясно, что ДНК не является непосредственной матрицей для синтеза полипептидных цепей белков. С другой стороны, целый ряд ранних наблюдений приводил к мысли о непосредственной связи РНК с синтезом белков в клетке. По-видимому, отсюда родилось представление о том, что РНК должна быть посредником, осуществляющим перенос генетической информации от ДНК к белкам, и, следовательно, что именно РНК может быть [c.9]

    На основании работ по синтезу индуцируемых ферментов у мутантов кишечной палочки совместно с Ж- Л. Моно выдвинул (1961) гипотезу о переносе генетической информации при участии информационной рибонуклеиновой кислоты и о механизме генетической регуляции синтеза белка у бактерий (концепция оперона). [c.187]

    Основное направление научных работ—изучение механизма функционирования бактериальных биокатализаторов. Разработал (1950— 1960) теорию переноса генетической информации с ДНК на рибосомы при участии информационной РНК. На основании работ по синтезу индуцируемых ферментов у мутантов кищечной палочки совместно с Ф. Жакобом выдвинул (1961) гипотезу о переносе генетической информации при участии информационной РНК и о механизме генетической регуляции синтеза белка у бактерий (концепция оперона). [c.343]

    Тесная связь между синтезом РНК и синтезом белка привела к предположению, что генетическая информация ДНК передается на РНК, которая при синтезе белка действует в качестве матрицы. Возможно, однако, что в некоторых случаях ДНК непосредственно служит матрицей при синтезе белка. Из этого следует, что РНК переносит генетическую информацию и существует механизм, который позволяет определенным образом отбирать и располагать аминокислоты вдоль молекулы РНК. Исследования, проведенные с вирусом табачной мозаики, показывают, что почти чистые препараты вирусной РНК могут передавать генотип этого вируса. В результате изучения специфичных аминоацил-з-РНК-синтетаз точно установлено, что эти ферменты могут катализировать образование специфичных соединений с s-PHK для каждой белковой аминокислоты. Специфичность этих соединений должна обеспечить их присоединение только к соответствующему месту на матрице. Получены данные, что такая специфичность обусловлена последовательностью нуклеотидов в s-PHK. Поэтому можно предположить, что каждое соединение аминокислота — s-PHK присоединяется к матричной РНК водородной связью. [c.486]


    Мысль о том, что какой-то вид РНК несет генетическую информацию для биосинтеза белка, была первоначально высказана на основании того, что у эукариот почти вся ДНК сосредоточена в ядре, в то время как синтез белка протекает главным образом в цитоплазме на рибосомах. Следовательно, какая-то макромолекула, отличная от ДНК, должна переносить генетическую информацию от ядра к рибосомам. Логическим кандидатом на эту роль была РНК, поскольку ее обнаружили и в ядре, и в цитоплазме. Было также отмечено, что начало синтеза белка в клетке сопровождается увеличением содержания РНК в цитоплазме и увеличением скорости ее обновления. Эти и другие наблюдения привели Френсиса Крика к предположению (ставшему частью центральной догмы молекулярной генетики), что РНК вьшолняет функцию переноса генетической информации от ДНК к рибосомам, где происходит биосинтез белка. Позже, в 1961 г., Франсуа Жакоб и Жак Моно предложили название матричная РНК для той части клеточной РНК, которая переносит генетическую информацию от ДНК к рибосомам, т. е. к месту, где эти молекулы-переносчики служат матрицами для биосинтеза полипептидных цепей с определенной последовательностью аминокислот. [c.910]

    Проблема внутриклеточной регуляции биосинтеза белков и нуклеиновых кислот, развивающаяся в последние годы, быстро стала одним из важнейших направлений в исследованиях. С развитием науки становится более конкретным представление о том, что специфическая нуклеотидная последовательность молекулы ДНК определяет структурную и биологическую специфичность синтезируемых в клетке белков. Специфическая структура ДНК обеспечивает точную генетическую (наследственную) передачу информации из поколения в поколение, от клетки к клетке. От ДНК эта информация в процессе жизнедеятельности каждой клетки передается через РНК белкам, а белки обусловливают в конечном счете все биологические свойства. В настоящее время вскрываются конкретные формы записи наследственной информации в цепях ДНК и механизмы переноса этой информации в места белкового синтеза через информационную РНК в рибосомы. Выясняются ранее неизвестные механизмы индукции и репрессии ряда белков в клетках. Все эти успехи являются результатом совместных усилий представителей многих наук — химии, генетики, цитологии, биофизики, биохимии, эмбриологии и т. п. Поэтому схватить вопросы биосинтеза белка и механизмы регуляции во всей их широте и многообразии чрезвычайно трудная задача. [c.294]

    Дж. Уотсон и Ф. Крик определили, что генетическая информация заключена в последовательности нуклеиновых оснований структуры ДНК. После того как было установлено, что синтез белка происходит в цитоплазме, стало очевидным, что должен существовать точный механизм переноса информации от ДНК, находящейся в ядре, к белку. [c.68]

    Транскрипция - процесс, в ходе которого считываются генетические коды, содержащиеся в ДНК. Продуктами транскрипции являются рибонуклеиновые кислоты, которые переносят заложенную в ДНК информацию к месту синтеза белка. [c.540]

    Химически агрессивная среда цитоплазмы обычно разрушает такие фрагменты гораздо быстрее, чем с них снимается копия для синтеза белка. Как и все организмы, бактерии живут только благодаря избирательному поглош ению веш,ества из внешней среды. Вероятность захвата фрагмента чужого генома обратно пропорциональна его длине (молекулярному весу) и, следовательно, осмысленности и специфичности содержаш ейся в нем информации. А ведь этот фрагмент предстоит не только прочесть (что возможно благодаря универсальности генетического кода), но и правильно понять , т. е. на основе полученной информации отдельные молекулы должны не только синтезироваться, но и правильно собраться в надмолекулярные функциональные системы клетки. Еще труднее представить себе подобную систему, эффективно работающую в чуждой для нее цитоплазматической среде. Обычно последствия такой работы оказываются негативными для клетки в целом. Иными словами, неспецифический горизонтальный перенос, если и отражается на физиологии клетки, то почти всегда разрушительно. [c.93]

    Моно [Monodl Жак Люсмн (1910— 1976). Французский биокимик и микро-био/10Г Окончил Парижский университет (1934), работал там же (с 1959 г.— профессор). Совместно с Ф. Жакобом высказал гипотезы о переносе генетической информации и механизме генетической регуляции синтеза белка в бактериальных клетках. Разработал теорию роста и развития бактерий, доказал возможность управления этим ростом. Лауреат Нобелевской премии по физиологии и медицине (1965, совместно с Ф. Жакобом и А. М. Льво- [c.185]

    Относительно РНК удалось выяснить, что это вещество синтезируется при участии ДНК хромосомы и осуществляет перенос генетической информации из ядра в цитоплазму, в особые цито-пла.зматические гранулы рибосомы, в которых локализован синтез белков. Одновременно другой специальный тип РНК с низким молекулярным весом и хорошей растворимостью осуществляет транспорт строительных материалов, т. е. аминокислот, внутрь рибосом, т. е. к месту синтеза белков. Показано, следовательно, что молекулы РНК разного типа — это орудия, непосредственно участвующие в реакциях синтеза белка в клетке. [c.8]


    Это открытие сразу прояснило механизм удвоения, репликации , генов через образование комплементарных пар О—С и А—Т (О — дезоксигуаниловая, С — деокси-цитидиловая, А — дезоксиадениловая, Т — тимидиловая кислоты). Стал ясен молекулярный механизм наследования Поэтому 1953 г. считают обычно годом рождения молекулярной биологии. Примерно в это же время сформировались идеи о том, что перенос генетической информации от ДНК к белку идет через РНК, т. е. в клетке существует информационная цепочка ДНК- РНК- белок. Эти представления были подкреплены выделением ферментов синтеза ДНК по матрице ДНК и синтеза РНК по матрице ДНК, т. е. ДНК-зависимых ДНК-полимеразы и РНК-полимеразы. [c.6]

    Во время роста в клетке имеется большое количество промежуточных и лабильных веществ. Современные методы исследования клеток, фракционирование, микроанализ составных частей, хроматографическое разделение и характеризация нуклеиновых кислот, авторадиография, использование радиоактивной метки и, для клеток с хорошо определенными ядрами, сравнение целых и энуклеированных клеток — все это позволило накопить множество фактов, на основании которых был создан ряд широко обсуждаемых в литературе теорий. В этих теориях фигурирует несколько различных типов РНК одни синтезируются в ядре и мигрируют к рибосомам, другие имеют низкий молекулярный вес некоторые относительно устойчивы, другие имеют малую продолжительность жизпи. Основное внимание в обсуждении обращено сейчас на чтение , перенос и транскрипцию генетической информации. Но в то же время все это связано со сложной системой растущих макромолекул. Большой интервал молекулярных весов, лабильность и необычайная реакционная спо собность — все это заставляет думать о растущих цепях, длина которых меняется и варьирует в широких пределах. Короткожи-вущая мессенджер — РНК действует, как постулируется, в качестве матрицы для синтеза белка на рибосомах, принося информацию от ДНК, тогда как другое лабильное вещество — РНК — переносчик действует как адаптер, ответственный за прикрепление нужной аминокислоты на нужное место. Однако все движение взад и вперед этих лабильных соединений сопряжено с постоянным ростом огромной стабильной макромолекулы. [c.529]

    Биологическая информация хранится в клетке в виде последовательного расположения оснований в молекуле ДНК. В процессе ее удвоения, или репликации (стр. 194), воспроизводятся точные копии ДНК, которые и осугцествляют передачу информации о наследуемых свойствах. Затем происходит транскрипция, во время которой генетическая информация переносится от ДНК на комплементарную, или информационную, РНК. И наконец, в ходе белкового синтеза генетическая информация т.ранслируется с четырехбуквенного языка информационной РНК на двадцатибуквенный язык белков [111]. Биосинтез белка подробно разбирается в многочисленных обзорах [1—19, 90, 118]. Здесь же мы коснемся его кратко и лишь в той мере, в какой это необходимо, чтобы рассмотреть роль нуклеиновых кислот в этом процессе. [c.264]

    ДНК трудно приписать роль непосредственного участника синтеза белков (в том числе ферментов), так как этот синтез в большинстве случаев происходит вне ядра клетки, в цитоплазме, где ДНК отсутствует. Действительно, было установлено, что синтез белка может происходить в отсутствие клеточного ядра. Вследствие этого можно сделать вывод, что генетическая информация должна переда-, ваться от ДНК каким-либо другим веществам, которые переносят ее от ядра к тем участкам в цитоплазме, где происходит синтез белка. Сразу же возникает вопрос о природе этих веществ. В настоящее время выяснено, что ими являются рибонуклеиновые кислоты (РНК) — полимерные молекулы, сходные по структуре с ДНК, за исключением того, что о-2-дезоксирибофураноза заменена в них D-ри- [c.141]

    Хотя структура полинуклеотидов хорошо приспособлена для хранения и передачи (репликации) информации, каталитические возможности молекул РНК. по-видимому, слишком ограничены, чтобы обеспечить все функпии современной клетки. Большая универсальность присуща полипептидам, они состоят из аминокислот с химически разнообразными боковыми цепочками и способны принимать разные пространственные формы, которые насыщены реакционноспособными участками. Свойства полипептидов делают их идеально подходящими для выполнения широкого круга структурных и функциональных задач. Даже полипептиды со случайной последовательностью, возникавшие под действием пребиотических синтетических механизмов, видимо, имели каталитические свойства и, в частности, могли облегчать репликацию молекул РНК. Полинуклеотиды, способствуюшие синтезу полезных полипептидов в своем окружении, должны были приобрести большое преимущество в эволюционной борьбе. Но каким образом полинуклеотиды могли бы осуществлять подобный контроль Как информация, закодированная в их последовательности, может определять последовательность полимеров иного типа Ясно, что полинуклеотиды должны действовать как катализаторы для сборки отобранных аминокислот. У современных организмов согласованная система молекул РНК направляет синтез полипептидов, т. е. синтез белка, однако этот процесс идет при участии других белков, синтезированных заранее. Биохимический аппарат, осушествляюший синтез белка, чрезвычайно сложен. Молекулы РНК одного типа содержат генетическую информацию о последовательности соответствующего полипептида. Роль других молекул РНК заключается в связывании определенной аминокислоты и переносе ее к месту сборки полипептидной цепи. Основой взаимодействия этих двух типов молекул РНК является комплементарность их оснований, что позволяет последовательности нуклеотидов информационной РНК направлять включение определенных аминокислот, доставляемых молекулами транспортной РНК, в растушую полипептидную цепь. Предшественники этих двух типов молекул РНК, по-видимому, направляли первый синтез белка без помощи белков (рис. 1-7, В). [c.18]

    Следовательно, ДНК, входя в состав ядра клетки, благодаря свойству самоудвоения молекул сохраняет свое количественное постоянство при делении клеток, определяет структуру и регулирует синтез образующихся в клетке белков, Но молекулы ДНК не являются непосредственно матрицами в самом процессе синтеза белка. Сначала происходит перенос генетической информацин о нуклеотидном строении ДНК на РНК. Затем последняя сама становится матрицей и в соответствии с информацией, полученной от ДНК, определяет последовательность соединения аминокислот в белковой молекуле. [c.148]

    Чем более специализированы клетки, тем меньше в них активных генов. Например, клетки эритроцитов осуществляют одну-едннствеиную функцию переноса кислорода крови, связываемого белком гемоглобина. При дифференциации этих клеток в активном состоянии находятся только гены, контролирующие образование гемоглобина. Поскольку во всех других клетках организма ие содержится гемоглобина, гены, контролирующие его синтез, необратимо репрессированы в них. В фенотипе проявляется только около 1% генетической информации. Остальные гены, происходящие ст далеких предков, прочно заблокированы. [c.306]

    Органелла, приспособленная для использования атмосферного кислорода при окислении различных субстратов с последующим синтезом АТР, не могла бы возникнуть до тех пор, пока кислород не появился в первичной восстановительной атмосфере благодаря деятельности фотосинтезирующих организмов. Результаты многочисленных наблюдений дают основания предполагать, что митохондрия в ее настоящем виде образовалась в результате успешного симбиоза эукариотной клетки, имевшей хорошо развитый гликолитнческий (анаэробный) путь метаболизма, и (не имевшей ядра) прокариотной клетки, которая обладала мембранной дыхательной цепью переноса электронов. Даже современные митохондрии располагают своим собственным генетическим аппаратом (ДНК, рибосомы) и обладают способностью изготовлять белки, основываясь на информации своей собственной ДНК (гл. 26). Однако лишь часть всех митохондриальных белков, а именно около дюжины полипептидных цепей, производится этим аппаратом, включая, например, три из пяти полипептидных цепей цитохромок-сидазы, одну или две цепи цитохрома Ь, одну или две цепи АТРазы, которые являются интегральной частью мембраны. Представляется вероятным, что в митохондриях синтезируются необычно гидрофобные водонерастворимые белки, которые иначе бы подверглись самоагрегации. Таким образом удается избежать необходимости их передвижения на какое-либо расстояние через цитозоль. Инструкции по синтезу многих других полипептидных цепей заложены, как обычно, в хромосомах клеточного ядра. [c.453]

    Матричный механизм биосинтеза белков. Общая схема матричного биосинтеза белковых тел представлена на рис. 93. Она складывается из трех подготовительных процессов—переноса вещества, энергии и информации в рибосому, и главного центрального процесса—сборки полипептидных цепей в рибосоме. Один из элементов указанной схемы (правая верхняя часть рисунка)—транскрипция (переписывание) информации о порядке расположения аминокислотных остатков в молекуле синтезируемого белка—рассмотрен ранее. Известно, что информация об этом закодирована в генетическом аппарате клетки последовательностью дезоксирибонуклеотидных остатков в молекуле ДНК. Будучи преобразована (транскрибирована) в последовательность рибонуклеотидных остатков в информативной части молекулы мРНК, синтезированной на ДНК в качестве матрицы, эта информация о первичной структуре белка поступает в рибосому. Здесь она переводится (транслируется) с полинуклеотидной последовательности в аминокислотную последовательность новообразуемого в рибосомальном аппарате белка. Два других процесса—перенос вещества (18 протеиногенных аминокислот и двух амидов) и. перенос энергии, необходимой для синтеза пептидных связей (левая верхняя часть рисунка), равно как и наиболее сложный процесс—сборка полипептидной цепи в активной, транслирующей рибосоме (центральная часть рисунка), нуждаются в детальной характеристике. Она дана ниже. [c.280]


Смотреть страницы где упоминается термин Белки синтез и перенос генетической информации: [c.488]    [c.41]    [c.153]    [c.115]    [c.94]    [c.37]    [c.118]    [c.37]    [c.94]    [c.297]    [c.286]    [c.287]    [c.465]    [c.529]    [c.444]    [c.475]    [c.18]    [c.46]   
Современная генетика Т.3 (1988) -- [ c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Белки информация

Информация



© 2024 chem21.info Реклама на сайте