Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гены кодирующие специфические ферменты

    Механизм репрессии конечным продуктом на уровне транскрипции стал проясняться с 50-х гг. Больщой вклад в это внесли работы Ф. Жакоба и Ж- Моно. Было показано, что наряду со структурными генами, кодирующими синтез ферментов, в бактериальном геноме существуют специальные регуляторные гены. Один из них — ген-регу-лятор (ген R), функция которого заключается в регуляции процесса транскрипции структурного гена (или генов). Ген-регулятор кодирует синтез специфического белка — репрессора. Репрессор — аллостерический белок, имеющий два центра связывания один центр узнает определенную последовательность нуклеотидов на участке ДНК, называемом оператором (ген О), другой — взаимодействует с эффектором. Ген-оператор расположен рядом со структурным геном (генами) и служит местом связывания репрессора. В отличие от операторных генов гены-регуляторы расположены на некотором расстоянии от структурных генов (продукты регуляторных генов — репрессоры являются свободно диффундирующими белковыми молекулами). [c.118]


    Интересно, что все гены, кодирующие специфические ферменты глиоксилатного пути, сосредоточены в одном участке бактериальной хромосомы. [c.481]

    Известны три вида процессов, в рамках которых осуществляется специализированный перенос информации (см. рис. 11.1). Один из них, перенос информации от РНК к РНК, удается зафиксировать только в клетках, зараженных вирусами, генетический материал которых представляет собой РНК. Это, например, вирус табачной мозаики (ВТМ) и многие другие вирусы растений, РНК-содержащие бактериофаги и некоторые вирусы животных, такие, как полиовирусы. Эти вирусные геномные РНК, одноцепочечные или двухцепочечные, обязательно несут гены, кодирующие специфические РНК-репликазы, т.е. ферменты, которые по РНК-матрице могут синтезировать комплементарные молекулы РНК. Эти молекулы в свою очередь могут служить матрицами для аналогичного синтеза копий родительских цепей РНК. Перенос генетической информации от РНК к РНК также основан на принципе комплементарности оснований в родительской и дочерней цепях РНК. [c.49]

    Типы полиморфизма ДНК. Наиболее распространенный тип полиморфизма ДНК-рестрикционный полиморфизм. Если в сайте узнавания для какой-то рестриктазы происходит точечная мутация, фермент не распознает свой сайт и не разрезает ДНК (рис. 2.84). Имея под рукой специфические ДНК-зонды и рестриктазы, можно анализировать ДНК. Рестрикционные фрагменты ДНК (рестрикты) различаются по длине (полиморфизм по длине рестрикционных фрагментов). Они идентифицируются по различной подвижности после гибридизации по Саузерну (рис. 6.5). В настоящее время метод гибридизации по Саузерну включает радиоактивное мечение. Вероятно, в будущем появится возможность нерадиоактивного мечения фрагментов ДНК. Точечные мутации, заменяющие один нуклеотид на другой в некодирующем районе ДНК, встречаются очень часто. Немногие систематические исследования изменчивости ДНК проводились путем анализа с использованием большого количества рестриктаз в небольшой выборке особей (10 12). Результаты, полученные для хорошо изученных к настоящему времени областей генома (гемоглобина, альбумина и сегментов ДНК с неизвестной функцией из разных хромосом) [1143 1742 1959], свидетельствуют о том, что уровень нуклеотидной изменчивости приблизительно на порядок выше, чем наблюдаемый по структурным генам, кодирующим белки. Это означает, что разница между случайно выбранными хромосомами составляет в среднем 75оо" 7г5о нуклеотидов (гетерозиготность = = 0,001 — 0,004). Особенно подходят для выявления вариантов ДНК ферменты Мер и Тая1, узнающие метилированный динуклеотид СрО. Большинство вариантов по длине рестрикционных фрагментов диморфны, т. е. имеют только два аллеля -присутствие ( + ) или отсутствие ( —) сайта рестрикции. Частота полиморфного ва- [c.288]


    Представление о ГПГ оформилось около 30 лет назад в связи с широким использованием в лечебных целях антибиотиков и других антибактериальных препаратов. К этому времени накопилось много фактов появления в клинике устойчивых к антибиотикам штаммов бактерий и их быстрого распространения от одних больных к другим, причем этот процесс был описан одновременно исследователями разных стран и континентов. Выяснилось, что устойчивые к лекарственным препаратам штаммы бактерий приобрели способность защищаться от их губительного действия с помощью различных механизмов. Один из распространенных способов защиты состоит в инактивации антибиотика посредством специфического фермента, образуемого устойчивыми клетками. Очень часто гены, кодирующие эти ферменты, расположены не на хромосоме, а на внехромосомных элементах - плазмидах. На рис. 37 показано, как осуществляется инактивация ампициллина и его производных ферментом, кодируемым плазмидным геном. Плазмиды с [c.126]

    Расщепление предшественников с образованием активных пептидных медиаторов катализируют специфические протеазы. Возможно, изменение их концентрации в клеточных компартментах (например, в аппарате Гольджи и секреторных гранулах), содержащих медиаторы, служит способом контроля скорости образования пептидных медиаторов. К сожалению, идентифицировать и охарактеризовать эти протеазы весьма непросто. В частности, возникают проблемы с отделением специфических протеаз от неспецифических протеолитических ферментов, находящихся в лизосомах. Наиболее успешные эксперименты были проделаны на дрожжах у них с помощью мутационного анализа был выявлен ген, кодирующий протеазу, которая катализирует расщепление предшественника феромона а-фактора. Такая же протеаза ответственна за созревание других пре-белков, а ее аналог, по-видимому, присутствует в клетках млекопитающих. [c.358]

    Бактерии можно не только использовать как фабрики для синтеза белков типа рестриктаз, но и получать с их помощью новые продукты, изменяя метаболизм бактериальных клеток введением в них чужеродных генов или модификацией уже существующих. Можно создавать рекомбинантные микроорганизмы, способные синтезировать самые разные низкомолекулярные соединения Ь-аскорбиновую кислоту, краситель индиго, аминокислоты, антибиотики, мономерные единицы различных биополимеров. Общая стратегия при этом состоит во введении в организм хозяина специфических генов, клонированных в подходящем векторе, которые кодируют один или несколько ферментов, катализирующих не свойственные микроорганизму метаболические реакции или влияющих на осуществляемый им в норме биосинтез определенных соединений. По имеющимся данным, создание новых метаболических путей не является технически неосуществимым. Этот подход поможет создать необычные, более эффективные пути синтеза самых разных соединений. [c.272]

    Во всех известных на сегодняшний день случаях не только геномные копии, но и кДНК любого из этих генов в составе экспрессирующего вектора способны к амплификации в трансфицированных культивируемых клетках (см., например, [6—9,11,12]). Следовательно, вряд ли существует некая специфическая последовательность ДНК, ответственная за амплификацию. И хотя механизм этого явления изучен недостаточно полно, можно все-таки предположить, что в ходе селекции происходит лишь фиксирование определенных случайных событий амплификации, возникающих независимо с определенной частотой во всех пролиферирующих клеточных популяциях. Одна из гипотез связывает эти события с ошибками репликации ДНК [2]. С этой гипотезой согласуется наблюдение о том, что амплифицирующиеся участки хромосомной ДНК во всех случаях значительно превышают по размеру собственно кодирующую последовательность фермента (часто амплифицируются фрагменты длиной более 1000 т. п.н.). Точно так же при селекции на амплификацию клонированных генов увеличивается число копий и других последовательностей вектора — они тоже вовлекаются в амплификацию. [c.240]

    В ДНК в форме специфической последовательности Т, А, С и G закодирована аминокислотная последовательность всех клеточных белков. Кодирование осуществляется триплетами из тимина, аденина, цитозина и гуанина. Три основания (кодон) кодируют одну аминокислоту. Тем самым ДНК действует как матрица для синтеза белков в клетке. Определенные участки ДНК (гены) ответственны за то или иное действие в клетке. Каждая клетка содержит полный набор информации для строительства своих белков, ферментов. [c.719]

    Структура генома у высших организмов — в смысле функционального разнообразия генных продуктов — до сих пор остается загадкой. Несомненно, многие гены кодируют фермен ты, и одним из побочных результатов исследования природных популяций дрозофилы было нанесение на генетическую карту разных видов многих новых генов, кодирующих специфические ферменты. Но количество ДНК в сперматозоиде D. melanogaster соответствует 10 парам оснований. Если считать, что на каждый кодон приходится три пары оснований, а каждый полипептид состоит в среднем из 150 аминокислот, то этой ДНК окажется достаточно для кодирования примерно 2-10 полипептидов. У человека ДНК в 16 раз больше, и ее хватит для кодирования 3-10 полипептидов. Едва ли мы сможем поверить, что высшие организмы способны синтезировать от 250 тысяч до [c.133]


    Некоторые бактерии, например Es heri hia oli, реагируют на недостаток глюкозы увеличением синтеза ряда ферментов, при помощи которых используются другие вещества, способные служить источниками энергии. Эта реакция опосредуется повьппением внутриклеточного уровня сАМР. В этом случае сАМР действует таким же образом, как, по-видимому, действуют стероидные гормоны в животных клетках он присоединяется к особьп рецепторным белкам, а комплексы сАМР с рецепторами в свою очередь связываются со специфическими участками бактериальной ДНК и активируют транскрипцию генов, кодирующих необходимые ферменты. [c.285]

    Рассмотрим теперь вкратце не совсем понятные химические явления, лежащие в основе таких явлений, как генетическая рекомбинация, интеграция вирусной ДНК с геномом клетки-хозяина и исключение профага из хромосомы клетки-хозяина. О сложности процесса рекомбинации свидетельствует тот факт, что у мутантов, дефектных по способности к рекомбинации, мутации локализуются не в одном, а в нескольких участках (генах) хромосомы Е. oli-, соответствующие гены обозначаются через гесА, В, С, F, G и Н. Бактерии с мутациями в некоторых из этих генов необычайно чувствительны к ультрафиолетовому облучению, что свидетельствует об их неспособности репарировать (восстанавливать) повреждения ДНК, вызванные действием ультрафиолета (гл. 13, разд. Г, 2). Из этого следует, что некоторые из ферментов, обеспечивающих процесс рекомбинации, нужны клетке также и для восстановления повреждений, вызванных действием ультрафиолетового излучения. Однако специфические функции большинства продуктов этих генов все еще до конца не выяснены. Считают, что у Е. oli имеются две полноценные системы общей рекомбинации. В геноме фага Я, имеются гены, кодирующие другую рекомбинационную систему, функционирующую независимо от продуктов генов фага Я, inf и xis (рис. 15-15), необходимых для интеграции и исключения генетического материала вируса и обеспечивающих процессы сайт-специфической (для определенных участков геномов) рекомбинации между генами клетки-хозяина и вируса. [c.281]

    С помощью клонирования специфических генов и последующей их экспрессии в бактериях получен целый ряд белков, которые можно будет использовать в качестве лекарственных препаратов. Большинство этих белков имеют эукариотическое происхождение, так что для выделения нужного гена сначала получают препарат мРНК, обогащенный интересующими исследователя фракциями, затем создают кДНК-библиотеку и встраивают соответствующую ДНК в подходящий вектор для экспрессии. Произведя обмен участков родственных генов, кодирующих аналогичные белковые домены, или прямо заменяя сегменты клонированного гена, кодирующие функциональные части белка, можно создавать новые модификации таких белков. В качестве лекарственных средств можно использовать и некоторые ферменты. Например, для снижения вязкости слизи, которая накапливается в легких больных муковисцидозом, применяют в виде аэрозоля рекомбинантную ДНКазу I и альгинатлиазу. [c.224]

    Для идентификации трансформированных клеток необходимо уметь обнаруживать чужеродную ДНК, интегрировавшую в геномную ДНК растения. Более того, при исследовании сигналов регуляции транскрипции и их функций в специфических растительных тканях (листьях, корнях или цветках) зачастую важно уметь количественно оценивать уровень экспрессии гена, кодирующего легко идентифицируемый продукт. Все это требует применения репортерных генов, которые позволяют либо проводить отбор трансформированных клеток, либо оценивать активность кодируемого ими фермента. Было протестировано несколько разных генов, которые можно использовать как доминантные селективные маркеры, и генов, чей белковый продукт можно обнаружить с помощью специфических методов (табл. 17.4). Поскольку многие из ренортерных генов имеют бактериальное происхождение, они были снабжены регуляторными последовательностями, обеспечивающими их экспрессию в растительных клетках. Проводя отбор по доминантному маркеру, можно получить культуру, содержащую только трансформированные клетки. Так, в присутствии канамицина выживают только клетки растений, синтезирующих активную неомицинфосфо-трансферазу. [c.381]

    Серьезной проблемой при транспортировке фруктов и овощей является их преждевременное созревание и размягчение. Установлено, что при созревании плодов в растениях активируются специфические гены, кодирующие ферменты целлюлазу и полигалактуроназу, и если подавить экспрессию одного или нескольких из них, то созревание может начаться позже. Для инактивации указанных генов были созданы трансгенные растения, в которых синтезировались антисмысловые РНК-версии этих генов. При введении гена, кодирующего антисмысловую полигалактуроназную РНК, в [c.405]

    Всякое живое существо по большинству своих признаков сходно со своими предками. Сохранение специфических свойств, т.е. постоянство признаков в ряду поколений, называют наследственностью. Изучением передачи признаков и закономерностей и Г наследования занимается генетика. Каждому признаку в качестве носителя информации соответствует определенный ген. Еще во времена классической генетики исследователи пришли к выводу, что гены находятся в клеточном ядре. Тогда же было уС ан6цлено, что они должны располагаться в линейном порядке. Долгое время считали, что наследственная информация связана с белковыми компонентами нуклеоплазмы. Лишь после успешных экспериментов по передаче наследственных признаков с помощью ДНК. (см. разд. 15.3.4) генетики пришли к убеждению, что именно ДНК, входящая в состав хромосом у всех организмов, служит материальным носителем наследственной информации, Сначала на насекомых, а затем на микроорганизмах было показано, что проявление признаков зависит от активности ферментов. У микроорганизмов ферменты можно было связать с конкретными признаками, поддающимися точному биохимическому определению. Гипотеза один ген-один фермент гласит, что определенный ген содержит информацию, необходимую для синтеза определенного фермента (позднее была принята более точная формулировка каждый структурный ген кодирует определенную полипептидную цепь). Изменение гена вследствие мутации приводит либо к утрате фермента, либо к изменению его свойств, а тем самым и к изменению признака. Гены выявляются только благодаря мутациям. Генетический анализ основан прежде всего на изучении различий в признаках, определяемых альтернативными формами (аллелями) того или иного гена. Поэтому исследование различных генетических проблем ведется на мутантах. [c.434]

    После экстракции ДНК подвергают иммобилизации на нитро-целлюлозном или нейлоновом фильтре, расплавлению и гибридизации с известными последовательностями генов, ответственными за синтез тех или иных специфических ферментов. Так, наличие в пробе тотальной ДНК генов, гибридизуемых с геном, кодирующим нитрогеназу, указывает на присутствие в анализируемом сообществе азотфиксаторов, генов метанмонооксигеназы — метанотрофов, генов РуБисКО — автотрофных микроорганизмов, фиксирующих углекислоту через цикл Кальвина. Расшифровано уже несколько десятков генов, кодирующих ключевые реакции тех или иных процессов, и, применяя метод гибридизации, можно делать выводы о наличии определенных микроорганизмов в анализируемой пробе. [c.256]

    Одной из причин, ставящих под сомнение присутствие ферментов синтеза цАМФ, является то, что в растениях пока не найдены гены, кодирующие аденилатциклазу. С другой стороны, хотя данные о фосфо-диэстеразной активности, которая специфически гидролизует цАМФ и [c.38]

    Если бы клонирующие гены, кодирующие ферменты метаболизма цАМФ, были найдены, то был бы окончательно решен вопрос о содержании и роли цАМФ в ранениях. Имеются данные и о том, что добавление цАМФ к растительным экстрактам стимулирует фосфорилирование специфических белков - киназ. Однако вьщеленная из растений проте-инкиназа все еще не очищена. Растительные киназы не стимулируются одним только цАМФ, но и ингибирование протеинкиназы животных различными регуляторами облегчается при участии цАМФ. Следовательно, можно говорить, что каталитическая субъединица растительной киназы подобна животной, но ее регуляция цАМФ in vivo происходит за счет какого-то растительного фермента. Но можно также и сказать, что цАМФ не является для растений регулятором in vivo. В тканях растений цАМФ приписывается и роль медиатора гормонального действия. [c.39]

    Вторая группа неадекватных реакций на лекарства — фармакологические эффекты через взаимодействие с белками-мищенями, такими, как рецепторы, ферменты, белки сигнальной трансдукции, контроля клеточного цикла и других событий. Молекулярно-генетические исследования показали, что многие гены, кодирующие такие лекарственные мишени, полиморфны. Их мутантные формы приводят соответственно к нарушению специфических взаимодействий лекарства и мишени, а отсюда и к аномальной реакции на уровне организма. [c.240]

    В другом эксперименте в результате инъекции в ооцит гибридного гена, состоящего из кодирующей последовательности гена tk вируса герпеса и промоторно-регуляторной области гена металлотиоиеина 1 мыши, получена трансгенная мышь, в печени и почках которой вирус-специфический фермент продуцировался на высоком уровне. Экспрессия гена МТ-1 метал-лотионеина контролируется на транскрипционном уровне ионами тяжелых металлов и глюко-кортикоидными гормонами. Показано, что гибридный ген, состоящий из регуляторной области МТ-1 и структурной части гена tk, в ооцитах мыши подвержен регуляции ионами кадмия, как и нативный ген МТ-1. После инкубации ооцитов с ионами кадмия выявляемая в них активность тимидинкиназы вируса герпеса увеличивалась примерно в 10 раз. [c.451]

    Важно уяснить, что именно основания, пуриновые или пиримидиновые, являются носителями генетической информации, подобно тому как боковые цепи аминокислот определяют химические и функциональные свойства аминокислоты. Носитель наследственной информации — молекула ДНК — организована в клетке в структурные единицы — гены. Эти последние в свою очередь локализованы в особых структурах — хромосомах, которые находятся в ядре животных или растительных клеток. Именно ген содержит информацию, определяющую специфический признак цвет глаз и волос, рост, пол и т. д. Однако для описания на молекулярном уровне ген — довольно сложное образование, так как число молекулярных стадий при реализации конкретного признака может быть весьма велико. Отметим, что любой генетический признак реализуется с помощью белкового синтеза (структурного белка либо фермента), и введем понятие более простого элемента — цистрона. Цистрон определяют как часть ДНК, которая несет генетическую информацию (кодирует) о синтезе лищь одной полипептидной цепи. Хромосома содержит много сотен цистронов. Все количество ДНК, содержащееся в клетке, называется геномом. [c.108]

    В будущем открываются широкие возможности для конструирования новых ферментов. Одна из них — направленное изменение отдель-ньгх аминокислот путем изменения генов, которые кодируют ферменты. Мы все глубже познаем законы, по которым белки принимают специфическую трехмерную конфигурацию, поэтому не исключено появление в ближайшем будущем соверщенно новых сконструированных ферментов. Это направление называется белковой инженерией. Кроме того, чем больше мы узнаем о том, как работают ферменты, тем более вероятно, что мы сможем сконструировать небелковые или частично небелковые катализаторы, которые гораздо стабильнее, чем обычные ферменты. Возможно, именно это направление окажется самым привлекательным для предпринимателей. Среди направлений, которые окупятся немедленно, — поиск природных ферментов, являющихся более совершенной альтернативой используемым в настоящее время. Все это требует огромных инвестиций в исследования и разработки. [c.86]


Смотреть страницы где упоминается термин Гены кодирующие специфические ферменты: [c.220]    [c.255]    [c.253]    [c.300]    [c.66]    [c.489]    [c.492]    [c.261]    [c.386]    [c.463]    [c.489]    [c.357]    [c.357]    [c.48]    [c.184]    [c.53]    [c.326]    [c.489]    [c.127]    [c.117]    [c.326]    [c.117]    [c.326]    [c.47]    [c.94]    [c.957]    [c.395]   
Генетические основы эволюции (1978) -- [ c.133 ]




ПОИСК





Смотрите так же термины и статьи:

специфическая

специфическая специфическая



© 2025 chem21.info Реклама на сайте