Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ультрацентрифугирование, определение молекулярной массы белка

    Ультрацентрифугирование растворов полимеров. Ультрацентрифуги, в которых развиваются центробежные ускорения, превышающие ускорение силы тяжести в десятки тысяч раз, широко применяются для изучения свойств макромолекул в растворах. Впервые этот метод был использован Т. Сведбергом для определения молекулярных масс белков. [c.153]

    Определение молекулярной массы белков методом ультрацентрифугирования требует много времени и сложной и дорогостоящей аппаратуры. Поэтому в последние годы разработаны два более простых метода (гель-хроматография и электрофорез). При использовании гель-хроматографии в первую очередь требуется откалибровать колонку. Для этого через колонку с сефадексом пропускают несколько белков с известными молекулярными массами и строят график, откладывая значения логарифмов молекулярной массы против их элюционных объемов, которые находят, как показано на рис. 1.9. [c.45]


    При разделении нуклеиновых кислот используют те же методы, что и при фракционировании белков, однако имеются ограничения, обусловленные большим диапазоном величин молекулярной массы (2-10 —Ы0 ° Да), отклонениями от глобулярной формы, различиями в четвертичной структуре (двухнитевые, однонитевые, кольцевые), значительным отрицательным зарядом в нейтральной области pH. Поэтому методы гель-фильтрации и ионообменной хроматографии не получили широкого распространения при фракционировании нуклеиновых кислот и значительно уступают ультрацентрифугированию и электрофоретическому разделению в геле агарозы, полиакриламидном геле или их смеси. Поскольку величина отрицательного заряда нуклеиновых кислот и продуктов их расщепления мало зависит от pH, а отношение заряда к молекулярной массе сохраняется практически неизменным, разделение нуклеиновых кислот при электрофорезе определяется не их зарядом, а размером молекул. При наличии маркеров с известной молекулярной массой возможно определение молекулярной массы препаратов нуклеиновых кислот и их фрагментов. [c.171]

    В табл. 6.14 дан список белков, использованных Брайсом и Кричтоном [6] для калибровки заполненной сефарозой 6В колонки при элюировании 6М раствором гуанидингидрохлорида, а на рис. 6.18 показана кривая зависимости gM от Kav При определении с применением гель-хроматографии ранее неизвестных молекулярных масс следует помнить, что полученные значения молекулярных масс являются лишь приближенными и их необходимо подтвердить с помощью другого независимого метода, например ультрацентрифугирования. Определяя молекулярные массы методом гель-хроматографии, всегда следует проводить калибровку при данных экспериментальных условиях на нескольких соединениях подобного же типа с различными, но заранее известными молекулярными массами. [c.390]

    Определение молекулярной массы белков возможно только в случае их хорошей растворимости. Одним из приемлемых методов является определение молекулярной массы по осмотическому давлению белковых растворов. Другой метод определения молекулярной массы основан на определении специфических фупп, связанных известным соотношением с молем белка. Например, по содержанию железа в гемоглобине можно определить молекулярную массу последнего. Известно, что гемоглобин содержит 0,335% Fe, что соответствует молекулярной массе 16,5 kDa на атом железа. Так как известно, что 1 моль гемоглобина содержит 4 атома железа, его молекулярная масса составляет 66,8 kDa. Метод, разработанный Т. Сведбергом и основанный на ультрацентрифугировании белковых растворов, является наиболее точным для определения молекулярной массы большинства водорастворимых белков. [c.44]


    Для определения молекулярных масс белков (и других высокомолекулярных соединений) существует ряд методов. Особенно большое значение среди них имеет метод ультрацентрифугирования. [c.304]

    Остановимся на определении молекулярных масс белков по данным седиментационного анализа. Если раствор макромолекул находится под действием очень сильного центробежного поля — при ультрацентрифугировании ускорение достигает (100 ООО... 500 000)g, то вследствие большой массы происходит седиментация молекул, т. е. их концентрация увеличивается от центра центрифуги к периферии. Одновременно с седиментацией происходит противоположный по тенденции процесс — диффузия макромолекул из области с большей концентрацией (на периферии) в центральную область с меньшей концентрацией. [c.81]

    Исследуемый раствор белка помещают в небольшую прозрачную для световых лучей ячейку, которую вставляют в специальное гнездо ротора. Молекулы белка в этой ячейке под действием центробежной силы, развиваемой при вращении ротора, постепенно оседают на дно. Фотоприставка к ультрацентрифуге позволяет делать снимки содержимого ячейки через определенные промежутки времени и определять таким образом скорость оседания белковых частиц. Определение молекулярной массы белка методом ультрацентрифугирования ведут двумя способами по скорости седиментации белковых молекул и по седиментационному равновесию. [c.36]

    Один из распространенных методов определения молекулярной массы белков и других высокомолекулярных веществ основан на измерении скорости седиментации (осаждения) веш еств при ультрацентрифугировании. Во враш аюш емся роторе ультрацентрифуги центробежное ускорение достигает 100 000-500 ООО g (g — ускорение свободного падения). На поверхность буферного раствора, налитого в кювету ультрацентрифуги, наносят тонкий слой раствора белка и кювету помешкают в ротор. При враш ении ротора молекулы белка, более плотные, чем растворитель, начинают перемеш аться в направлении от оси вращения. Положение белковой зоны в кювете в ходе центрифугирования регистрируется специальной оптической системой по показателю преломления, который больше в зоне белка, чем в буферном растворе. [c.43]

    В период между 1925 — 1930 гг. Сведберг с помощью ультрацентрифугирования произвел определение молекулярных масс различных белков. Одновременно применение других аналитических методов, как, например, электрофореза и различных видов хроматографии, привело к развитию аналитической белковой химии. В 1951 — 1956 гг. Сенгер [20, 21] установил аминокислотную последовательность инсулина. Использованные при этом методы легли в основу систематического определения первичной структуры многих белков. Созданный Эдманом в 1966 г. секвенатор и применение масс-спектрометрии в сочетании с ЭВМ как средством регистрации, обработки и оценки масс-спектрометрических данных привели к тому, что к настоящему времени опубликовано более 15 ООО работ, посвященных определению аминокислотных последовательностей, и установлены первичные структуры более чем для 1000 белков. [c.343]

    Из-за зависящей от концентрации тенденции многих белков к агрегации или диссоциации на субъединицы определение молекулярных масс становится проблематичным, интерпретация результатов различных физикохимических методов часто также является сложной. Обычно суммируют значения для различных фракций и затем делят полученную величину на число частиц в растворе или относят среднюю величину не к числу, а к средней массе частиц. Метод ультрацентрифугирования позволяет найти среднюю молекулярную массу. [c.362]

    Молекулярную массу интактного олигомера определяют в неденатурирующих условиях с помощью методов ультрацентрифугирования, гель-фильтрации и электрофореза в градиенте полиакриламидного геля (ПААГ). Устойчивость и растворимость большинства олигомерных белков зависит от ионной силы и pH буферного раствора. В отличие от электрофореза в ПААГ,. где на состав буферных растворов накладываются определенные ограничения, в част1юсти ионная сила не должна превышать 0,1, гель-фильтрацию можно вести в буферных растворах стабилизирующих олигомер (например, в присутствии ионов металлов или кофакторов). Для определения молекулярной массы белков применяют классический вариант гель-фильтрации на сшитых декстранах, полиакриламиде или агарозе. В последнее время получены гели нового типа, позволяющие вести процесс при повышенном давлении, благодаря чему время анализа сокращается с 1—2 сут до 30 мин (гл. 6). [c.17]

    Среди первых результатов, полученных при помощи ультрацентрифугирования, можно назвать определение молекулярной массы гемоцианина Helix pomatia, равной 4 930 000 [12]. Величина эта была получена с помощью низкоскоростного равновесного центрифугирования со скоростью 11 ООО об/мин (5400 g). А ведь значения молекулярной массы этого белка, полученные прежними методами, составляли всего лишь величину порядка 200 ООО, и это еще считалось очень большой величиной Центрифугу с редукторным приводом использовали также Сведберг и Фарес в 1926 г. для определения молекулярной массы карбоксигемоглобина [13]. Полученное ими значение составило 67 870, что хорошо согласовывалось с величиной 66 700, установленной Аде-ром [6, 7] методом осмотического давления для 10 различных гемоглобинов. Определение молекулярной массы гемоглобина, основанное на данных о содержании железа, давало минимальную величину 16 700. [c.23]


    В современных мощных ультрацентрифугах оседают пе только кол.чоидные частицы гидрофобных коллоидов, но и молекулы белков и других высокомолекулярных соединений. Помимо очистки, метод ультрацентрифугирования широко применяется в настоящее время для определения среднего радиуса коллоидных частиц, а также для вычисления молекулярной массы высокомолекулярных соединений. Практически все выдающиеся достижения молекулярной биологии обязаны, этому методу. Следует отметить, что работа с ультрацентрифугой очень сложна и кропотлива, так как требует тщательного учета влияния многих побочных факторов. [c.294]

    Для определения чистоты (или гомогенности) ферментных препаратов в настоящее время наиболее широко используются ультрацентрифугирование и диск-электрофорез. В основе первого из них лежит различная скорость седиментации в ультрацентрифуге белков с различной молекулярной массой (и различной формой молекул). Одним из ограничений данного метода является то, что разные белки могут иметь одну и ту же величину седиментации и не разделяться при ультрацентрифугировании. С другой стороны, белок в растворе может находиться в виде нескольких форм, различающихся по степени агрегации, а следовательно, и по молекулярной массе. Если эти формы не превращаются одна в другую или превращения осуществляются достаточно медленно, на седиментограмме обнаружится несколько пиков, что, однако, не будет свидетельствовать о наличии примесных белков в исследуемом препарате фермента. Недостатком метода является также его невысокая чувствительность, что не позволяет обнаруживать малые количества примесных белков. [c.205]

    Больше всего известно об аминокислотной последовательности субъединиц с высокой молекулярной массой, изолированных Филдом и др. [79] (молекулярная масса, определенная с помощью ДДС-Ыа-ПААГ, — 144 ООО, ультрацентрифугированием — 69 600 Да). Действительно, установлена последовательность из 16 аминокислот N-концевой половины цепи она была определена при секвенировании изолированного белка [79]. Кроме того, благодаря клонированию ДНК, кодирующей эту субъединицу, и определению ее нуклеотидной последовательности стало возможным установить последовательность из 101 аминокислоты у СООН-концевой половины цепи [81] (см. табл. 6Б.15). Анализ последовательности N-концевой половины цепи подтверждает предыдущие результаты она не соответствует ни одной из тех последовательностей, которые были предварительно идентифицированы для а-, Р-, 7- и й)-глиадинов или агрегированных глиадинов. Эта аминокислотная последовательность N-концевой половины цепи по составу очень отличается от аминокислотного состава полного белка меньше неполярных аминокислот, глицина, а также глутаминовой кислоты и глутамина. Отмечается также отсутствие серина, тогда как все основные аминокислоты присутствуют. Поэтому такая последовательность не является представительной для первичной структуры всей полипептидной цепи, которая должна содержать зоны, более богатые глицином и бедные глутамином. Наконец, примечательно наличие 2 цистеинов из 5 или 6, которые входят в состав целой молекулы, так как оно с большой вероятностью предопределяет конформацию молекулы, как и возможности образования внутрицепочных дисульфидных мостиков. Опыты с разрывом полипептидной цепи на уровне цистеинов подтвердили, что большинство из них должно располагаться у концов цепи [79]. В самом деле, обнаруживается третий цистеин в положении 13 у С-конца [81]. Эта С-кон- [c.210]


Смотреть страницы где упоминается термин Ультрацентрифугирование, определение молекулярной массы белка: [c.202]    [c.25]   
Биохимия человека Т.2 (1993) -- [ c.50 ]

Биохимия человека Том 2 (1993) -- [ c.50 ]




ПОИСК





Смотрите так же термины и статьи:

Белки молекулярный вес

Белки определение молекулярной массы

Масса белка

Масса определение

Молекулярная масса

Молекулярная масса определение

Молекулярный вес (молекулярная масса))

Молекулярный вес, определение

Ультрацентрифугирование



© 2025 chem21.info Реклама на сайте