Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Глутаминовая кислота

    По полярности боковой цепи Я различают полярные и неполярные аминокислоты. К неполярным аминокислотам относятся глицин и аланин, а также гидрофобные аминокислоты — валин, лейцин, изолейцин, пролин, метионин и фенилаланин. К полярным аминокислотам причисляют серин, треоиин, цистеин, аспарагин, глутамин и триптофан (нейтральные соединения), аспарагиновую и глутаминовую кислоты и тирозин (кислые гидрофильные аминокислоты), а также лизин, аргинин и гистидин (основные гидрофильные аминокислоты). Гидрофильные полярные соединения увеличивают растворимость пептидов и белков в водных системах, в то время как нейтрально-полярные аминокислоты ответственны за каталитическую активность ферментов. В противоположность неполярным гидрофобным аминокислотам полярные аминокислоты обычно находятся на поверхности молекулы белка. [c.17]


    Глутаминовая кислота представляет собой один из основных компонентов всех животных тканей, но в мозге ее концентрация особенно высока, причем в нейронах выше, чем в глии. Введение глутамата в кору мозга методом микроинофореза вызывает очень сильную реакцию возбуждения. Следовательно, это вещество, как полагают, может оказаться основным медиатором возбуждения в центральной нервной системе. (Необходимо, однако, отметить, что введенные таким же образом аспарагиновая и цистеиновая кислоты также обладают мощным возбуждающим действием, но продукты их декарбоксилирования — -аланин и таурин — оказывают тормозящий эффект.) [c.340]

    Расположение, или последовательность, аминокислот вдоль белковой цепи определяет первичную структуру белка. Первичная структура ответственна за неповторимую индивидуальность белка. Замена хотя бы одной аминокислоты может привести к изменению биохимических свойств белка. Например, серповидноклеточная анемия представляет собой генетическое (наследственное) заболевание, вызываемое единственной ошибкой в построении белковой цепи гемоглобина. Эта белковая цепь содержит 146 аминокислот. Первые семь аминокислот в нормальной цепи-валин, гистидин, лейцин, треонин, пролин, глутаминовая кислота и снова глутаминовая кислота. У человека, страдающего серповидноклеточной анемией, шестая аминокислота в этой цепи-валин, а не глутаминовая кислота. Замещение всего одной аминокислоты с кислотной функциональной группой в боковой цепи на аминокислоту с углеводородной боковой цепью настолько изменяет растворимость гемоглобина, что в конечном итоге приводит к нарушению нормального кровообращения (см. также разд. 12.8, ч. 1). [c.448]

    Глутаминовая кислота подобно другим аминокислотам при взаимодействии с сульфатом меди в щелочной среде образует окрашенный медный комплекс, что также используется для подтверждения ее подлинности. [c.190]

    После окончания разделения хроматограмму высушивают на воздухе и проявляют раствором нингидрина путем опрыскивания из пульверизатора. З-атем нагревают 15—20 мин при 60° С в термостате или сушильном шкафу. Расположение аминокислот сверху вниз по направлению движения растворителя следующее цистин, лизин, аргинин, гистидин, аспарагиновая кислота, серии (три последние аминокислоты располагаются в виде тесно сближенных пятен) глутаминовая кислота, треонин, аланин, пролин, тирозин, валин, метионин, триптофан, фенилаланин, лейцин, изолейцин (последние три аминокислоты также часто располагаются в виде тесно сближенных пятен). [c.301]


    Оптическая изометрия. Установлено, что левовращающие изомеры часто активнее правовращающих. Установлено также, что изомеры действуют различно на вкусовые нервные окончания и имеют различную силу действия. Например, правовращающие аспарагиновая и глутаминовая кислоты сладкого вкуса, а их левовращающие изомеры — безвкусны. [c.144]

    Исследование синтетических полипептидов, а также анализ известных белковых структур, полученных с помощью рентгеновской кристаллографии, показали, что некоторые аминокислоты, например глутаминовая кислота, аланин и лейцин, способствуют образованию а-спирали. Другие аминокислоты, в частности метионин, валин и изолейцин, чаще [c.97]

    Больше всего известно об аминокислотной последовательности субъединиц с высокой молекулярной массой, изолированных Филдом и др. [79] (молекулярная масса, определенная с помощью ДДС-Ыа-ПААГ, — 144 ООО, ультрацентрифугированием — 69 600 Да). Действительно, установлена последовательность из 16 аминокислот N-концевой половины цепи она была определена при секвенировании изолированного белка [79]. Кроме того, благодаря клонированию ДНК, кодирующей эту субъединицу, и определению ее нуклеотидной последовательности стало возможным установить последовательность из 101 аминокислоты у СООН-концевой половины цепи [81] (см. табл. 6Б.15). Анализ последовательности N-концевой половины цепи подтверждает предыдущие результаты она не соответствует ни одной из тех последовательностей, которые были предварительно идентифицированы для а-, Р-, 7- и й)-глиадинов или агрегированных глиадинов. Эта аминокислотная последовательность N-концевой половины цепи по составу очень отличается от аминокислотного состава полного белка меньше неполярных аминокислот, глицина, а также глутаминовой кислоты и глутамина. Отмечается также отсутствие серина, тогда как все основные аминокислоты присутствуют. Поэтому такая последовательность не является представительной для первичной структуры всей полипептидной цепи, которая должна содержать зоны, более богатые глицином и бедные глутамином. Наконец, примечательно наличие 2 цистеинов из 5 или 6, которые входят в состав целой молекулы, так как оно с большой вероятностью предопределяет конформацию молекулы, как и возможности образования внутрицепочных дисульфидных мостиков. Опыты с разрывом полипептидной цепи на уровне цистеинов подтвердили, что большинство из них должно располагаться у концов цепи [79]. В самом деле, обнаруживается третий цистеин в положении 13 у С-конца [81]. Эта С-кон- [c.210]

    Исследования изменений, происходящих в содержании отдельных аминокислот, показали, что оба дефолианта вызывают значительное накопление в листовых пластинках хлопчатника основных аминокислот, глютаминовой кислоты, валина и лейцина через 48 ч после обработки (табл. 1) Через 72 ч содержание этих аминокислот все еще остается высоким, но через 96 ч резко падает, иногда ДО уровня их в необработанных растениях. По сравнению с хлоратом магния бутифос в большей степени увеличивает содержание основных аминокислот и глютаминовой кислоты. Существенной разницы между дефолиантами в накоплении валина и лейцина нет. Убыль же этих аминокислот, а также глутаминовой кислоты из листовых пластинок хлопчатника на четвертые сутки после обработки происходит быстрее в варианте с бутифосом, чем в варианте с хлоратом магния. [c.141]

    В 1950 г. вошел в строй специальный ионитовый цех на Павенчайском сахарном заводе (Литовская ССР), который работал на выпускаемых Кемеровским заводом катионите КУ-1 и анионите АН-1 (ТМ). С целью уде-пк вления стоимости ионитпой очистки цине разработал схему получения удобрительных туков, а также глутаминовой кислоты и бетаина из отработанных регенерационных растворов. [c.279]

    Янтарная кислота НООССНоСНаСООН. Название этой кислоты связано с тем, что она находится в янтаре. Кроме того, янтарная кислота найдена во многих растениях (например, в незрелых ягодах крыжовника, винограда, в свекольном соке, в стеблях ревеня), в буром угле и окаменелом дереве. Она образуется также в больших количествах при некоторых процессах бактериального разложения яблочной и винной кислот и прн брожении белковых веществ (например, казеина). Существенно также ее образование при спиртовом брожении, где она, вероятно, получается из глутаминовой кислоты (одной из аминокислот белка). Щитовидная и зобная железы некоторых животных должны содержать янтарную кислоту. [c.343]

    Иные представления о фотосинтезе развивает Варбург 2. По его мнению, фотосинтез состоит из световой и темновой реакций в первой из них каждая молекула хлорофилла образует одну молекулу кислорода, при темновой же реакции две трети образовавшегося на свету кислорода вступают в обратную реакцию, причем вновь регенерируются исходные вещества. Таким образом, фотосинтез связан с дыханием. По Варбургу, углекислота фиксируется, по крайней мере частично, в виде а-карбоксила глутаминовой (а также аспарагиновой) кислоты, которые тем самым участвуют в связывании и восстановлении СОг. [c.984]

    Цинк участвует также в процессах окисления глутаминовой кислоты (в составе глутаматдегидрогеназы) в реакциях окисления этанола (в алкогольде-гидрогеназе, в расщеплении фруктозодифосфата, в альдолазе) и др. [c.362]


    Восстановление п-глюконолактона с помощью NADDa и фермента бычьей печени дает исключительно немеченую о-глюкозу и NAD(D)+. Также ь-глутаматдегидрогеназа печени катализирует окисление L-глутаминовой кислоты в соответствующую иминокислоту (далее гидролизуемую до 2-оксоглутаровой кислоты), используя для присоединения иона водорода В-поверхность NAD+  [c.347]

    Глутаминовая кислота не является незаменимой, однако она имеет большое значение для улучшения вкусовых качеств пищи (см. том I 3.12). Ее г олучают из растительных белков (глутеин, соевый жмых) кислотным гидролизом. Источником получения фенилаланина и аргинина также является белковое сырье (яичный альбумин, зеин). Основные аминокислоты осаждаются из гидролизата желатина в виде флавиана-тов (солей 2,4-динитро-1-нафтол-7-сульфокислоты). Лнзин осаждается из белковых гидролизатов в виде труднорастворимого монопи-крата. [c.658]

    Окраска комплекса зависит также и от тех аминокислотных остатков, которые входят в состав пептида. Так, оксиаминокислоты смещают спектр поглощения в сторону более коротких волн. Пептиды, образованные по у Карбоксильной группе глутаминовой кислоты, не дают биуретовой реакции. [c.504]

    Как было установлено, цикл лимонной кислоты протекает в микроорганизмах, в проростках растений, а также в клетках животных. Наличие этой и других общих черт, одинаково присущих самым различным организмам, свидетельствует об общности происхождения живых организмов, как это и предполагается эволюционной теорией. Существуют данные, свидетельствующие о том, что в некоторых микроорганизмах цикл Кребса дает главным образом молекулы с особой структурой, служащие специфическим целям (так, -кетоглутаровая кислота необходима для синтеза глутаминовой кислоты и некоторых других аминокислот). Для человека и других животных цикл лимонной кислоты — источник указанных специфических веществ и энергии. [c.404]

    Важная роль аминокислот в процессах жизнедеятельности с давних пор стимулировала исследования по проведению поиска лекарственных средств как среди природных аминокислот, так и их синтетических аналогов. В результате широких фундаментальных исследований такие природные аминокислоты, как глутаминовая кислота (I), метионин, гистидин, цистеин, а также препараты, являющиеся смесью аминокислот, получаемые из гидролизатов крови и других биологических субстратов, прочно вошли в арсенал лекарственных средств и активно используются в терапии при лечении больных с заболеваниями различной этиологии. Существенное влияние в проблеме направленного поиска новых лекарственных средств среди аминокислот и их производных оказало развитие исследований по биохимии клетки и организма в норме и патологии. Так, изучение метаболических процессов, протекающих в нервных тканях, показало, что первичным продуктом ферментативного расщепления I является у Зминомасляная кислота (II). [c.7]

    Определение качественного и количественного аминокислотного состава белков и пептидов проводят после их гидролиза кислотой или щелочью. Оба вида гидролиза разрушают некоторые аминокислоты. При щелочном гидролизе частично разрушаются цистеин, серии, треонин и происходит частичная рацемизация некоторых аминокислот. При гидролизе соляной кислотой (5,7 н., 105—110° С), которая обычно используется при кислотном гидролизе пептидных связей, практически полностью разрушается триптофан. В связи с этим содержание триптофана в пробах обычно определяют после щелочного гидролиза или спектрофотометрическим методом Кроме того, наблюдаются значительные потери оксиаминокислот (серина, треонина, тирозина), се-русодержащих аминокислот (цистеина, метионина) и частично пролива. При этом степень разрушения аминокислот зависит от чистоты и концентрации НС1, используемой для гидролиза, а также длительности и температуры гидролиза. Следует отметить, что примеси альдегидов при кислотном гидролизе приводят к значительной потере тирозина, а также цистеина, гистидина, глутаминовой кислоты и лизина, а примеси углеводов в больших концентрациях — к разрушению аргинина. [c.123]

    Сухую бумагу размечают так, что линия старта находится на расстоянии одной трети (20 см) от катода. Гидролизат, растворенный в смеси ацетон — 1 н. НС1 или в 50%-ном растворе пиридина, наносят на сухую бумагу в минимальном объеме (10—20 мкл). С обеих сторон от образца-гидролизата на расстоянии 2—3 см наносят образцы отдельных ДНС-аминокислот- свидетелей , а также 2 стандартные смеси ДНС-аминокислот. Смесь А состоит из ДНС-производных аспарагиновой кислоты, пролина, треонина, валина, фенилаланина, бис-ДНС-лизина, а-ДНС-лизина, в-ДНС-лизина и ДНС-ЫНг. Смесь Б состоит из ДНС-производных цистеиновой кислоты, глицина, глутаминовой кислоты, серина, аланина, лейцина, изолейцина, гистидина, аргинина, а-ДНС-тирозина, о- и б с-ДНС-тирозина. На бумагу необходимо наносить не менее 1—5 нмоль каждой из ДНС-аминокислот. После нанесения образцов бумагу увлажняют буфером (с. 138), помещают в прибор для средневольтного электрофореза с источником пи- [c.150]

    Для более полного разделения дансилированных производных треонина и серина, а также производных аспарагиновой и глутаминовой кислот проводят хроматографию в растворителе 3, в том же направлении, в котором проводили хроматографию в растворителе 2. [c.153]

    В настоящее время установлено, что помимо ацетилхолина нейромедиаторами являются норадреналин, адреналин (у амфибий) и у-ами-номасляная кислота (ГАМК). Известно также большое количество соединений — кандидатов на роль медиаторов. К ним относятся дофамин, 5-окситриптамин (серотонин), глутаминовая кислота и глицин, в пользу медиаторной функции которых накапливается все больше данных. В отношении других соединений, таких, как аспарагиновая кислота, таурин и ряд пептидов, в том числе гипоталамические либерины, вопрос окончательно еще не решен [58]. Возможно, что список несомненных нейромедиаторов будет быстро расти. Принято считать, что каждый отдельный нейрон высвобождает только один медиатор. Однако в настоящее время существуют некоторые сомнения относительно этого тезиса. [c.335]

    Глутаминовая кислота относится к важнейшим возбуждающим медиаторам в центральной нервной системе (ЦНС) беспозвоночных и, вероятно, играет важную роль и в нервной системе человека. Не исключено, что аспарагиновая кислота также является нейромедиатором. Как у-аминоиасляная кислота, так и глицин считаются основными тормозными медиаторами. Еслн возбуждающие медиаторы вызывают деполяризацию постсинаптической мембраны, то тормозные медиаторы способствуют гиперполяризации, по-виднмому, путем увеличения проводимости мембран в отношении К и С1 . В результате в присутствии тормозных медиаторов возбуждение постсинаптической мембраны происходит с большим трудом, чем в их отсутствие. [c.335]

    Описываемый нами способ, использующий также диэтило-выи эфир а-ацетоглутаровой кислоты, позволяет без затруднений осуществить синтез глутаминовой кислоты без особой аппаратуры из доступных исходных материалов и с хорошими выходами по отдельным стадиям. [c.74]

    В специальных кальций-связывающих белках, или парвальбуми-нах , ион Са + связан как с амидной группой, так и с кластером карбок-силат-ионов. Установлена трехмерная структура такого белка из мышцы карпа (рис. 4-5). В этом белке имеется два центра связывания для кальция. В одном из них (рис. 4-5, Л, слева) ион Са + связан с четырьмя карбоксильными группами боковых цепей остатков аспарагиновой и глутаминовой кислот, с гидроксильной группой остатка серина, а также с карбонильным кислородом 57-го остатка пептидной цепи. Заметим, что эта Же самая пептидная группа связана водородной связью с карбонильной группой другого сегмента полипептидной цепи, расположенного рядом со вторым центром связывания иона Са + (рис. 4-5, Л справа). Этот центр содержит четыре карбоксилат-иона (один из которых осуществляет координационное связывание иона a + обоими ато-мами кислорода) и карбонильную пептидную группу. Значение данной [c.268]

    РИС. 4-5. А. Часть полипептидной цепи кальций-связывающего белка мышцы карпа, содержаш,ей 108 аминокислотных остатков. Показаны две петли, связывающие ионы кальция, и водородная связь между ними. Б. Система водородных связей, связывающих два сегмента полипептидной цепи внутри молекулы. Обратите внимание на связь между гуанидиновой группой остатка аргинина (75) и карбоксилатом остатка глутаминовой кислоты (81), а также карбонильной группой пептидной связи 18-го остатка. Обратите внимание и на то, что карбоксилат взаимодействует также с двумя пептидными NH-группами [32, 32а]. [c.269]

    РИС. 4-19 В. Карта электронной плотности дезоксигемоглобина человека, построенная по рентгеноструктурным данным разрешение 0,35 нм. Контурные линии указывают области высокой электронной плотности в отдельных участках молекулы гемоглобина. На этой карте показано сечение, сделанное в основном по Р-субъединицам перпендикулярно оси симметрии 2-го порядка на уровне остатка глутаминовой кислоты в 6-м положении, т. е. в Месте, по которому происходит замещение в молекуле гемоглобина при серповидноклеточной анемии. Видны части спиралей А, Е и Р, а также остатки УаМ, С1и-6, Ьу8-82 и Н15-143. Максимум, обозначенный через Х , соответствует неорганическому аииону, вероятно сульфату [c.310]

    Свободные аминокислоты нужны в живом организме и для выполнения специфических задач. Так, глутаминовая кислота выполняет особую функцию переноса при переаминировании, метионин — при переметилировании. Главными продуктами разложения аминокислот являются аммиак, мочевина и мочевая кислота. Восполнение потерь аминокислот происходит в основном в результате расщепления белков, а также переаминирования а-кетокислот и взаимных превращений аминокислот. [c.10]


Смотреть страницы где упоминается термин также Глутаминовая кислота: [c.1045]    [c.68]    [c.34]    [c.297]    [c.658]    [c.897]    [c.905]    [c.1167]    [c.297]    [c.646]    [c.168]    [c.243]    [c.151]    [c.89]    [c.197]    [c.289]    [c.515]    [c.45]    [c.224]    [c.390]    [c.540]    [c.29]   
Биохимия Том 3 (1980) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Глутаминовая кислота



© 2025 chem21.info Реклама на сайте