Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимическая преобразователи

    Электрохимические процессы имеют большое практическое значение. Электролиз используется в металлургии легких и цветных металлов, в химической промышленности, в технологии гальванотехники. Химические источники тока широко применяются в быту и промышленности. Электрохимические процессы лежат в основе многих современных методов научного исследования и анализа. Новая отрасль техники — хемотроника — занимается созданием электрохимических преобразователей информации. Одной из важнейших задач электрохимии является изучение коррозии и разработка эффективных методов защиты металлов. В неравновесных условиях в растворе электролита возникают явления переноса вещества. Основные виды переноса диффузия — перенос вещества, обусловленный неравенством значений химических потенциалов внутри системы или между системой и окружающей средой конвекция — перенос вещества под действием внешних механических сил миграция — перенос заряженных частиц в электрическом поле, обеспечивающий электрическую проводимость электролитов. [c.455]


    Электродные процессы используют при конструировании различных средств измерения и преобразования информации датчиков механических и акустических величин, интеграторов, выпрямителей и стабилизаторов тока и т. п. Так на стыке электрохимии, автоматики и электроники возникло новое научное направление — хемотроника, задачей которого является разработка электрохимических преобразователей информации, или хемотронов. Развитие этого направления вызвано растущими потребностями в средствах технической кибернетики. [c.216]

    ХУ1.2. ЭЛЕКТРОХИМИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ (ХЕМОТРОНЫ) [c.417]

    Простейшим электрохимическим преобразователем служит электрохимический диод. Он представляет собой миниатюрную электрохимическую двухэлектродную ячейку из стекла, пластмассы или дру- [c.216]

    Электрохимическими преобразователями, или хемотронами, называют приборы и отдельные элементы устройств, принцип действия которых основан на законах электрохимии. Электрохимические системы такого рода выполняют роль диодов, датчиков, интеграторов, запоминающих устройств и соответственно выполняют функции выпрямления, усиления и генерирования электрических сигналов, измерения неэлектрических величин и др. В хемотронах происходят процессы преобразования электрической энергии в химическую, а также механической энергии в электрическую и др. В отличие от электронных устройств (ламповых и полупроводниковых), в которых перенос электричества осуществляется электронами, в электрохимических преобразователях заряды переносятся ионами. Согласно закону Фарадея, количество вещества, претерпевшего изменение на электроде, пропорционально количеству прошедшего электричества. Поэтому измеряя тем или иным способом количественное изменение вещества, можно определить количество электричества, т. е. интегрировать электрические сигналы. Для этого электрохимическая реакция должна быть а) обратимой, т. е. реакция на аноде должна быть обратной реакции на катоде. Например, на аноде Си — 2е Си на катоде Си + + Че" Си б) реакция должна быть единственной, иначе точное интегрирование тока затруднено в) электролиты и электроды должны быть устойчивыми во времени г) реакции на электродах должны протекать с достаточно высокими скоростями. Таким требованиям могут удовлетворять некоторые электрохимические реакции, характеризующиеся потенциалами, лежащими между потенциалами водородного и кислородного электродов (рис. 66). При отсутствии в системе газообразных водородов и кислорода и при малой электрохимической поляризации электродов на них будут протекать лишь основные реакции. Системой, удовлетворяющей указанным требованиям, может быть 12+ + 2е ч 21" Е = 0,53 В. Потенциал ее положительнее потенциала водородного электрода и при рН< 11 отрицательнее потенциала кислородного электрода, поэтому в водных растворах в присутствии иода и ионов I" кислород и водород выделяться не будут. Эта реакция в прямом и обратном направлениях протекаете небольшой электрохимической поляризацией, следовательно, на электродах можно получить [c.367]


    Простейшим электрохимическим преобразователем служит электрохимический диод. Он представляет собой миниатюрную, электрохимическую двухэлектродную ячейку из стекла, пластмассы или другого инертного материала, заполненную раствором, содержащим окисленную и восстановленную формы вещества (рис. 116, ). Один из электродов имеет небольшую поверхность 1, тогда как поверхность [c.230]

    Рассмотрим некоторые электрохимические преобразователи первого типа, которые наиболее распространены. При помощи таких приборов осуществляется преобразование одних электрических величин в другие, а также разнообразных внешних воздействий в электрические сигналы. В этих хемотронах обычно используют инертные электроды и обратимые окислительно-восстановительные системы типа иод-иодид, ферро-феррицианид и др. Наиболее часто применяют платиновые электроды и систему иод-иодид, в которой протекает реакция 1 "+2е 7 31 . В основе работы приборов рассматриваемого типа лежит зависимость диффузионного тока от различных параметров (размера поверхности электрода, концентрации реагирующего вещества, температуры, скорости движения жидкости у поверхности электрода и т. д.). [c.216]

    Кроме рассмотренных созданы другие электрохимические преобразователи мемисторы, датчики давления и вибрации, модуляторы света и др. Хемотроны обладают определенными достоинствами, открывающими перспективу их широкого применения в радиоэлектронных и кибернетических схемах. Достоинством хемотронных устройств является их простота, высокая чувствительность, малое потребление энергии, малые цена и размеры. К недостаткам хемотронов относятся невозможность [c.420]

    Высокая чувствительность в области низких и инфранизких частот, экономичность, простота устройства и изготовления, малые габариты, надежность обеспечивают всевозрастающее применение электрохимических преобразователей информации. [c.222]

    Применяются самые разнообразные физические трансдьюсеры электрохимические, оптические, термические, пьезоэлекфические, акустические и т.д. В настоящее время наиболее широко используются биосенсоры с электрохимическими преобразователями. Одни из них представляют собой специальный электрод, на который нанесен слой биоматериала, а другие регистрируют ток электрохимической реакции одного из участников ферментативного процесса на поверхности электрода. Первые относятся к потенциометрическим сенсорам, а вторые - к амперометрическим. Функционально биосенсоры сопоставимы с биорецепторами, которые преобразуют реакцию живых организмов на воздействие окружающей среды в электрические сигналы [c.292]

    Рассмотрим некоторые электрохимические преобразователи первого типа, которые наиболее распространены. При помощи таких приборов осуществляется преобразование одних электрических величин в другие, а также разнообразных внешних воздействий в электрические сигналы. [c.230]

    ХИМОТРОНИКА научное направление, возникшее на стыке автоматики, электроники и электрохимии разрабатывает основы действия и принципы построения электрохимических преобразователей (химотронов), а также способы использования этих приборов в электронике, автоматике, вычислительной технике. [c.275]

    В электрохимических преобразователях на основе фазовых переходов на электродах используют процессы катодного осаждения и анодного растворения металлов (меди, серебра и др.) на инертных электродах или электродах из того же металла процессы восстановления или образования пленок солей или окислов (Ag l-f ё -> Ag+ l- d (0Н)2+ +2e->- d- -20H и др.) процессы выделения и ионизации водорода и др. Приведем некоторые примеры хемотронов данного типа. В качестве электрохимических счетчиков машинного времени используют малогабаритные кулонометры. Трубку из прозрачного материала заполняют двумя столбиками ртути, разделенными столбиком электролита. С обоих концов трубку герметично закрывают. Прибор включают в цепь питания контролируемого оборудования так, чтобы через [c.224]

    Хемотроникой называют раздел электрохимии, который занимается разработкой принципов построения и способов применения электрохимических преобразователей информации, или хемотронов. Электрохимические преобразователи позволяют осуществить восприятие, хранение, переработку, воспроизведение и передачу информации и могут функционировать в качестве элементов или блоков вычислительных и управляющих устройств. В основе действия этих приборов лежат закономерности различных электрохимических явлений и процессов. По этому признаку хемотроны подразделяют на следующие основные группы I) концентрационные преобразователи 2) электрокинетические преобразователи 3) преобразователи на основе фазовых переходов на электродах. [c.267]

    В последние годы для построения электрохимических преобразователей начали применять твердые электролиты, что позволяет конструировать более миниатюрные и долговечные устрой- [c.270]


    При создании электрохимических преобразователей используются также законы кинетики электрохимических реакций. Согласно уравнению, (X. 19) максимальная скорость реакции (предельная плотность тока /др) растет с увеличением концентрации реагентов в объеме раствора Су и уменьшением толщины диффузионного слоя б  [c.369]

    В подобных интеграторах отсутствует коррозия металлических деталей приборов, а использование их возможно в более широких интервалах температур (до нескольких сот градусов). Наиболее пригодны в качестве интеграторов электронные кулонометры, характеризующиеся широким диапазоном измерений, большим интервалом допустимых токов, протекающих через прибор, высокой точностью, возможностью построения кривой количество электричества — время. Подобные и другие электрохимические преобразователи обладают рядом преимуществ и стимулируют электрохимические исследования. [c.69]

    Химотроника, или электрохимические преобразователи информации. Точность выполнения электрохимических законов и удобство измерения и преобразования электрических величин позволяют использовать электрохимические явления для создания ряда точных приборов преобразователей тока, интегрирующих устройств, регистрирующих устройств и датчиков различного типа. Работа этих приборов чаще всего основана на процессах пропускания электрического тока через систему электролит — металл, сопровождающихся поляризацией, изменением массы или объема веществ используются также электрокапиллярные явления, связанн-ые с изменением поверхностного натяжения на границе металл — электролит, зависящим от наложенного потенциала. [c.257]

    В последние годы для построения электрохимических преобразователей начали применять твердые электролиты, что позволяет конструировать более миниатюрные и долговечные устройства. Описаны электрохимические управляемые сопротивления на основе Agi, ин-тегратор-кулонометр, представляющий собой ячейку AglAggSIjAu, и другие хемотроны. Разработка электрохимических преобразователей стимулирует исследования кинетики электродных процессов применительно к специфическим условиям их протекания в этих устройствах (микроэлектроды, малые объемы электролита, малые расстояния между электродами, влияние различных добавок на электрохимические реакции и т. п.). [c.225]

    Электрохимическими преобразователями, или хемотронами, называют приборы и отдельные элементы устройств, принцип действия которых основан на законах электрохимии. Электрохимические системы такого рода выполняют роль диодов, датчиков, интеграторов, запоминающих устройств и соответственно выполняют функции выпрямления, усиления и генерирования электрических сигналов, измерения неэлектрических величин и др. В хемотронах происходят процессы преобразования электрической энергии в химическую, а также механической энергии в электрическую и др. В отличие от электронных устройств (ламповых и полупроводниковых), в которых перенос электричества осуществляется электронами, в электрохимических преобразователях заряды переносятся ионами. Согласно закону Фарадея, количество вещества, претерпевщего изменение на электроде, пропорционально количеству прошедшего электричества. Поэтому измеряя тем или иным способом количественное изменение вещества, можно определить количество электричества, т. е. интегрировать электрические сигналы. Для этого электрохимическая реакция должна быть а) обратимой, т. е. реакция на аноде должна быть обратной реакции на катоде. Например, на аноде Си — 2е на катоде Си + + 2е Си б) ре- [c.417]

    Создание автоматических систем контроля и управления потребовало разработки электрохимических преобразователей. Это направление названо химотрони-кой , а сами приборы — химотронами . [c.496]

    Строго говоря, использование электрохимических явлений для контроля и управления не ново. Широко применяют кондуктометрические, потенциометрические, полярографические и другие электрохимические методы контроля. Хорошо известны также рН-метры, электрохимические счетчики ампер-часов и т. п. Однако эти примеры не исчерпывают всех возможностей создания подобных приборов для обслуживания новых областей техники. В последнее время успехи в развитии теоретической электрохимии позволили создать многие интересные электрохимические преобразователи самого различного назначения датчики температуры, механических и акустических воздействий, интеграторы, управляемые сопротивления, оптические модуляторы, выпрямители и стабилизаторы микротоков, нелинейные емкости, генераторы колебаний тока и напряжения, индикаторы отказа электронных схем, умножители, дифференцирующие устройства, усилители постоянного тока и т. п. [c.496]


Библиография для Электрохимическая преобразователи: [c.216]    [c.228]   
Смотреть страницы где упоминается термин Электрохимическая преобразователи: [c.382]    [c.382]    [c.271]    [c.367]    [c.371]    [c.496]   
Курс общей химии (0) -- [ c.417 ]

Курс общей химии (0) -- [ c.417 ]

Предмет химии (0) -- [ c.417 ]




ПОИСК





Смотрите так же термины и статьи:

Преобразователи

Удельные энергетические характеристики электрохимических приборов — накопителей н преобразователей электрической энергии

Электрохимическая ячейка — основа ЭП. С Информационные и информационно-энергетические характеристики ЭП-преобразователей информации

Электрохимические преобразователи (хемотроны)

Электрохимические преобразователи информации



© 2025 chem21.info Реклама на сайте