Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура молекулярная также тип механический и тип молекулярной

    Выше мы кратко рассмотрели зависимость от молекулярной структуры эластомеров технологических свойств сажевых смесей и основных физико-механических свойств вулканизатов. Можно указать на ряд других свойств резин, имеющих важное значение при конструировании различных резино-технических изделий, такие как усталостная выносливость, ползучесть, остаточные деформации и др., улучшение которых связано с получением однородных материалов — однородных сеточных структур, что в свою очередь, опирается на внедрение каучуков с определенным молекулярным составом. Весьма существенным является также использование растворимых вулканизующих групп и интенсификация процессов смешения. [c.92]


    С другой стороны, в связи с тем, что свойства термоэластопластов в значительной мере определяются степенью разделения фаз, весьма важным параметром их структуры является чистота блоков — отсутствие засоренности их другим сомономером. Для бутадиен-стирольных термоэластопластов, помимо многочисленных электронномикроскопических исследований фазовой структуры, было изучено влияние молекулярной массы, состава и числа блоков в макромолекулах на степень разделения фаз методом измерения температурной зависимости тангенса угла механических потерь [11] и установлено, что увеличение молекулярной массы, а также увеличение числа блоков в макромолекулах снижает степень этого разделения. [c.59]

    Свойства высокомолекулярных соединений зависят от молекулярного веса, химического состава и строения, формы макромолекул, ориентации и релаксации (релаксация — снятие напряжений в материале при нагревании), а также упорядоченности структуры макромолекулы. С увеличением молекулярного веса до известного предела улучшаются физико-механические свойства полимеров. Химический состав и строение оказывают большое влияние на тепло-, морозостойкость и химическую стойкость полимеров. Полимеры, имеющие менее разветвленное (асимметричное) строение макромолекулы, отличаются большей вязкостью, меньшей растворимостью и большей прочностью. От правильной ориентации макромолекул во многом зависит качество искусственного и синтетического волокон. [c.294]

    Молекулярно-весовое распределение играет определяющую роль в реологических свойствах. Поэтому оно может оказывать влияние на механические свойства твердого полимера косвенно, предопределяя его конечную физическую структуру. Обнаружена также прямая корреляция между молекулярными характеристиками полимеров, их вязкоупругими свойствами и стойкостью к ударным нагрузкам. Исследования в этом направлении успешно развиваются. [c.14]

    На физико-химич. и технич. свойства вулканизатов влияет не только тип поперечных химич. связей, но и взаимодействие макромолекул за счет водородных и др. видов межмолекулярных связей, возникающих вследствие наличия в полимере полярны групп и активных атомов, а также образование ассоциатов в результате взаимодействия самих поперечных связей (ионных и полисульфидных). Поэтому необходимо учитывать изменение при В. межмолекулярного взаимодействия вследствие присоединения к макромолекулам вулканизующих агентов и продуктов разложения ускорителей, антиоксидантов и др. Из-за отсутствия разработанной молекулярной теории механических свойств полимеров представления о влиянии структуры вулканизатов на их прочностные и эластические свойства носят характер гипотез. [c.266]


    Процесс выделения каучука в самостоятельную фазу в существенной степени определяется термодинамическим сродством между каучуком и ЭО [1, 21]. При этом большое значение имеют активность От, вязкость системы и другие факторы. Более того, можно предположить, что воздействие повышенных температур, приводящих к усилению молекулярной подвижности в системе и уменьшению ее вязкости, также должно вносить определенный вклад в процесс разделения фаз. В связи с этим нами было изучено влияние термической обработки на структуру и физико-механические свойства ЭКК. [c.95]

    В книге помещены статьи крупнейших советских ученых в области физики высокомолекулярных соединений по механической, диэлектрической и магнитной релаксации полимеров и композиций на их основе. Особое внимание уделяется связи прочностных и вязкоупругих свойств полимеров с их химическим составом, а также с молекулярным строением и надмолекулярной структурой. [c.2]

    Как видно из таблицы, даже весьма длительная пластикация в атмосфере инертного газа (азот, водород) приводит к незначительному изменению пластичности. Это изменение, очевидно, происходит за счет механического разрушения глобулярной и молекулярной структуры, а также термической дезагрегации каучука. Полный эффект пластикации наблюдается лишь в том случае, когда процесс протекает в атмосфере кислорода, следовательно, с участием последнего. [c.288]

    В зависимости от назначения полимерные покрытия должны удовлетворять различным механическим, адгезионным, теплофизическим и электрофизическим свойствам, а в некоторых случаях — и таким специфическим показателям, как чувствительность к определенной области излучений, бактерицидными и противогрибковыми свойствами, определенной пористостью, теплостойкостью, негорючестью. Сочетание этих свойств достигается главным образом путем синтеза полимеров с определенными функциональными группами, молекулярной и надмолекулярной структурой, а также в результате их физической и химической модификации. В зависимости от химического состава пленкообразующих, природы функциональных групп и условий формирования можно получать покрытия с линейной и сетчатой структурой. [c.5]

    Наряду с вышеуказанными требованиями к молекулярной и надмолекулярной структуре необходимо также получение максимально однородной макроструктуры [5]. Так, многие виды волокон мокрого метода формования имеют ядро и оболочку с различной структурой и соответственно различной ориентацией. Для них часто характерно наличие внутренней пористости, неравномерности сечения и т. п., что препятствует достижению высоких механических свойств. [c.306]

    Под влиянием различных воздействий полимеры подвергаются расщеплению с разрывом химических связей в главной цепи полимерной молекулы. Такие процессы называют реакциями деструкции полимеров. При деструкции понижается молекулярная масса, изменяется структура, а также физико-химические, механические, электрические и другие свойства полимеров. Деструкция полимеров происходит под действием теплоты света, ультразвука, окисления, радиационного облучения, механических воздействий и других факторов. [c.507]

    Наиболее устойчив к термоокислительной деструкции и свето-старению ПЭВД. Поскольку ок имеет также наименьшую молекулярную массу и низкую температуру плавления, его лучше всего применять для получения покрытий [9, с. 94]. Однако по химической стойкости, теплостойкости и механической прочности покрытия ПЭНД превосходят ПЭВД. Это объясняется тем, что ПЭНД обладает значительной кристаллической структурой. [c.77]

    У химических волокон влияние степени полимеризации полимера на механические свойства волокна выражено менее отчетливо, чем у природных волокон. В процессе формования волокна и последующей его обработки (вытягивании) можно в широких пределах изменять структуру и величину агрегатов макромолекул (элементов надмолекулярной структуры), а также степень ориентации макромолекул и их агрегатов, и тем самым в несколько раз увеличить его прочность. При этом степень полимеризации остается без изменения. Поэтому структура химического волокна влияет на его прочность в значительно бoл >шeй степени, чем молекулярный вес .  [c.31]

    Приведенные данные показывают, что имеет место несколько неупругих процессов, связанных с наличием поверхностного гидратированного слоя образование адсорбционных комплексов с координационной связью, а также механически инициированная десорбция молекул воды, связанных со структурой кварцевого стекла молекулярными силами и водородными связями. [c.151]

    Улучшение физико-механических показателей резин, совершенствование их структуры связано с использованием регулярно-построенных полимеров, имеющих низкое значение Гс, состоящих из гибких макромолекул высокой молекулярной массы и имеющих узкое молекулярно-массовое распределение. При этом после вулканизации получаются совершенные сеточные структуры, которые характеризуются также узким распределением длин между узлами сетки и высокой подвижностью сегментов цепи. [c.92]


    Как было показано выше, химическое течение может быть вызвано также механической деструкцией трехмерной сетки. Однако между этими двумя видами дестпуктивного течения имеются существенные различия. При химическом течении, вызванном интенсивным механическим воздействием, молекулярные цепи или их обрывки приобретают способность свободно перемещаться относительно друг друга. Поэтому после механической деструкции сетки начинается истинное физическое течение полимера, сопровождающееся разрушением трехмерной структуры. В процессе течения вновь возникающие химические связи де-структируются под действием интенсивных механических напряжений. Значительное сшивание полимера происходит только после прекращения действия внешних сил. [c.239]

    Механические свойства. Механические свойства мембран определяются их структурой на молекулярном, надмолекулярном, морфологическом уровнях. В свою очередь, эта структура зависит от типа молекул и их формы, а также от различных технологических параметров процесса получения мембран. Для полимерных мембран имеют значение различные прочностные характеристики — прочность и к растяжению, и к сжатию. [c.72]

    В связи с расширением областей применения парафинов, церезинов и разработкой на их основе восковых композиций большое значение приобретают физико-механические свойства этих продуктов, такие как твердость, прочность, пластичность, адгезия, усадка и др. Прочностные и пластичные свойства твердых углеводородов могут быть оценены по остаточному напряжению сдвига, температуре хрупкости и показателю пластичности. Результаты работ [16, 22] показали, что физико-механические свойства твердых углеводородов обусловлены их химическим составом, структурой молекул отдельных групп компонентов и связанной с ней плотностью упаковки кристаллов твердых углеводородов, а также фазовым состоянием вещества. Сопоставление физико-механических свойств со структурой твердых углеводородов проведено [16] на молекулярном уровне с использованием температурных зависимостей показателей преломления и ИК-спектров в области 700—1700 см-. На рис. 33 и 34 приведены результаты исследования грозненского парафина, состоящего из парафиновых углеводородов нормального строения, и углеводородов церезина 80 , не образующих комплекс с карбамидом и содержащих разветвленные и циклические структуры. [c.126]

    В коагуляционно-тиксотропных структурах частицы сближаются друг с другом и сцепляются под действием сил молекулярного притяжения. Слабые молекулярные связи между частицами могут быть разорваны путем механического воздействия на структурированную систему (перемешивание, взбалтывание и т. д.). Разрыв связей приводит к разрушению структуры утратившие связь частицы приобретают способность к беспорядочному тепловому движению. Важно также отметить, что в коллоидно-тиксотропных системах после прек]5ащения механического воздействия на них разрушенная структура через некоторое время самопроизвольно восстанавливается, при этом как разрушение, так и восстановление структуры происходит при постоянной температуре. [c.368]

    По второму из указанных направлений в качестве объекта были выбраны парацетамол, глицин и пироксикам. Исследованы условия кристаллизации различных полиморфных модификаций, их взаимных твердофазных превращений, уточнены кристаллические структуры, исследовано влияние гидростатического давления на структуры, а также изучена механическая активация, как чистых образцов, так и молекулярных кристаллов в смеси с различными органическими и неорганическими подложками. [c.39]

    Первичная структура синтетич. М. предопределяет (вместе с молекулярно-массовым распределением, т. к. реальные синтетич. полимеры состоят из М. разной длины) способность полимеров кристаллизоваться, быть каучуками, волокнами, стеклами и т. п., проявлять ионо- или электронообменные св-ва, быть хемомех. системами (т.е. обладать способностью перерабатывать хим. энергию в механическую и наоборот). С первичной структурой связана также способность М. к образованию вторичных структур (см ниже). В биополимерах, состоящих из строго идентичных М., этм структуры достигают высокой степени совершенства и специфичности, предопределяя способность, напр., белков быть ферментами, переносчиками кислорода и т.п. [c.636]

    В этом исследовании, как и в ряде других, было показано, что в полимерных материалах, подвергнутых воздействию высоких температур на воздухе, происходят химические процессы, приводящие к термоокислительной деструкции и структурированию. Кроме того, протекают физические процессы, в результате которых изменяется молекулярная и надмолекулярная структура, а также резко изменяются механические свойства. Результаты, полученные с помощью оптической микроскопии, свидетельствуют о том, что продолжительное тепловое воздействие на поликапро-амид при температуре 423 К приводит к некоторому увеличению сферолитов и появлению более четких межсферолитных границ. При увеличение продолжительности теплового воздействия или при повышении температуры прочность чистого поликапроамида по сравнению с исходным резко уменьшается. [c.162]

    Имеется и другой механизм влияния адгезии на адгезионную прочность. Известно, что силовое поле твердой поверхности простирается в глубь соседней фазы на значительное расстояние. Вследствие этого на границе с субстратом возникает слой адгезива, отличающийся но структуре и физико-механическим свойствам от основной массы адгезива [19, 24]. Толщина этого модифицированного слоя и степень отличия его свойств от свойств основной массы адгезива зависят во многом от характера взаимодействия адгезива с субстратом. Наличие этого слоя не может не сказаться на механике работы адгезионного соединения и на адгезионной прочности [24]. Так, молекулярные силы в зоне контакта, т. е. адгезия, предопределяют прочность адгезионного соединения, причем в данном случае характер разрушения не имеет нринци-пиального значения разрушение может иметь когезионный характер, но если оно происходит по модифицированному слою адгезива, адгезионная прочность зависит от свойств этого слоя и от молекулярных сил, т. е. от адгезии. На прочность адгезионного соединения, несомненно, оказывает влияние также характер распределения напряжений, а локальные напряжения в зоне контакта адгезив — субстрат, очевидно, зависят от характера молекулярного взаимодействия компонентов. Разумеется, адгезионная прочность подчиняется тем же общим закономерностям, что и прочность твердых тел. Однако наличие адгезии — моле- [c.8]

    Известны также гетероциклические соединения нефти, содержащие в своей молекуле атомы серы и кислорода. Это вполне согласуется с представлениями о том, что в основе структуры молекул смол и асфальтенов лежат поликонденси- рованные циклические системы, построенные из карбо- и гетероциклических колец. Хотя и нелегко, но все же возможно отделить от смол близкие к ним по строению углеродного скелета высокомолекулярные полициклические углеводороды. Методы, пригодные для осуществления такого разделения, должны основываться на различии в свойствах этих двух классов высокомолекулярных соединений нефти, обусловленном появлением в молекулах смол большего или меньшего количества гетероциклических структур. Это различие быть может можно успешнее использовать на основе химических методов (гидрирование, окисление и др.). Во всяком случае нельзя согласиться с высказанным отдельными исследователями предположением, что смолы, выделенные из нефтяных остатков, представляют собою механическую смесь углезодородов с сера-и кислородсодержащими органическими соединениями. Если бы это было так, то тогда элементарный состав смол, выделенных различными методами, различался бы в очень широких пределах. Между тем как сопоставление многочисленных данных анализов показывает, что такие характеристики, как отношение С Н, удельный и молекулярный веса, содержание кислорода и серы, а также сумма всех гетероэлементов, сохраняют довольно устойчивое постоянство для нефтей близкой химической природы, а отношение С Н — для смол большинства исследованных нефтей. Конечно же, полнота отделения углеводородов от смол в сильной степени зависит как от их химической природы, так и от совершенства применяемых методов разделения, что не может не сказываться в большей или меньшей степени на результатах анализов смол. [c.368]

    НОГО описания механизма проводимости требуется также изучить молекулярную структуру растворителя, объяснить и про-ангГлизировать при помощи сложной статистико-механической модели элементарные стадии смещения ионов. Теория, основанная на соотношениях между макроскопическими свойствами, для большинства практических целей дает достаточ но надежные результаты. Однако теории механизма электролитической проводимости приводят к выводам, количественно соответствующим экспериментам только в наиболее простых случаях они помогают интерпретировать лишь наиболее фундаментальные свойства электропроводности. [c.302]

    Известен ПП с изотактической, синдиотактической, атактической структурой, а также стереоблокполимер. Получаемый в промышленности ПП имеет изотактическую структуру с регулярно построенной цепью голова к хвосту . Механические своргства ПП определяются его структурой. Для него характерна высокая стойкость к многократному изгибу, сравнительно высокая ударная вязкость, которая возрастает с увеличением молекулярной массы и [c.62]

    Эти результаты прямо указывают на то, что иммобилизация воды в дисперсиях гидрофильных веществ и структурообразо-вание тесно связаны между собой. Тиксотропная коагуляционная структура, по-видимому, формируется при взаимном влиянии поверхности гидрофильных частиц на структуру полислоев воды и их свойства, а структура гидратных оболочек — на характер ориентации и силы сцепления частиц твердой фазы друг с другом. Связанная вода во многом обусловливает те свойства, которые присущи коагуляционным структурам пониженную механическую прочность, способность к замедленной упругости и т. д. [135]. Вместе с тем в результате формирования коагуляционной сетки в дисперсии заметно снижается молекулярная подвижность иммобилизованной воды [136], изменяется также кинетика ее удаления из дисперсии [137]. Уже отмечалось, что в процессе структурообразования дисперсий монтмориллонита (перехода золь — гель) наблюдается обратимое увеличение объема дисперсии. Это указывает не только на понижение плотности граничных слоев воды при структуриро- [c.44]

    Механические свойства волокон можно понять на примере молекулярной модели шерсти, которая уже была предложена для объяснения их других свойств. Структуру шерсти рассматривали как состоящую из двух фаз (рис. 8). Одна из них в сильной степени поглощает влагу и вследствие этого ослабляется, в то время как другая водонепроницаема, поэтому влага не оказывает влияния на ее механические свойства . В результате электронномикроскопических исследований Меркера, Роджерса, Сикорского и др 1,3,25,29.33 а также исследования инфракрасных спектров и дифракции рентгеновских лучей было установлено, что водонепроницаемая фаза идентифицируется с микрофибриллами в шерсти, а водопроницаемая — с матрицей. Полагают, что микрофибриллы состоят из хорошо организованных кератиновых а- [c.98]

    Вследствие большей подвижности структурных элементов и ориентирующего влияния подложки в поверхностных слоях, граничащих с окружающей средой (с воздухом), возникают сложные надмолекулярные образования различной формы, размера и строения в зависимости от типа пленкообразующего и химического состава полимера. Эти структуры ориентируются в плоскости подложки с формированием сетки, сферолитоподобных образований и структур с ядром в центре и ориентированными относительно его сферами из структурных элементов различного размера, морфологии и степени упорядочения. Эти сложные образования в пограничном слое являются различного рода структурными дефектами. Они ухудшают декоративные, защитные и физико-механические свойства покрытий. Сложные структурные образования являются типичными для покрытий, формирующихся в виде тонких слоев на поверхности твердых тел, и не обнаруживаются при отверждении в тех же условиях блочных материалов, хотя структура последних также неоднородна по толщине. Вероятность формирования, число и размер сложных надмолекулярных образований в поверхностных слоях покрытий тем больше, чем шире молекулярно-массовое рас-лределение в системе, что свидетельствует о том, что центрами структурообразования в этом случае являются надмолекулярные структуры более высокомолекулярных фракций. [c.250]

    Таким образом, плотность, молекулярная масса и молекулярно-массовое распределение оказывают заметное влияние на комплекс физико-механических свойств полиэтилена и их стабильность в процессе хранения или эксплуатации. Полиэтилен высокой плотности можно получить как при низком, так и при среднем давлении в зависимости от применяемой каталитической системы. Полиэтилен среднего давления имеет большую разветв-ленность по сравнению с полиэтиленом низкого давления. В то же время полиэтилен среднего давления имеет более высокое содержание ненасыщенных групп, примерно в 2—3 раза выше, чем у полиэтилена низкого и высокого давления. Такие особенности структуры полимера могут повлиять на его стойкость к старению в различных условиях. Показано [35], что свойства полиэтилена среднего давления в процессе старения также подвер- [c.73]

    Одновременно с уплотнением молекулярной структуры волокна в процессе тепловой обработки увеличиваются модуль удругости (модуль Юнга) и петлевая прочность волокон. Существенно изменяются также механические показатели технических и кордных нитей, подвергнутых тепловой обработке под натяжением. Получаемые при этом данные противоречивы, так как свойства нитей зависят от пх натяжения и от возможной релаксации внутренних напряжений в условиях прогрева нитей под натяжением. [c.134]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    Работа посвящена получению адсорбентов формованием их тонкодисперсных частиц с помощью связующих. В качестве последних были применены концентрированные, устойчивые водные золи кремнекислоты, основные соли алюминия и переосажденная гидроокись алюминия, пептизированная азотной кислотой. Изучено влияние дисперсности связующего, его содержания в гранулах, а также дисперсности частиц формуемого адсорбента на пористую структуру, механическую прочность и адсорбционные свойства сформованных и термически обработанных гранул. В результате такого исследования в укрупнепно-лаборатор-ном масштабе разработаны способы получения следующих формованных адсорбентов водоустойчивого силикагеля, активной окиси алюминия, пористых стекол с молекулярно-ситовыми свойствами, активного кремнезема и синтетических цеолитов типа А, X, У, Ь, эрионита и морденита. Библ. — 16 назв., табл. — 2. [c.260]

    В т. I изложены основы химии и физики полимеров, кинетика образования высокомолекулярных веи1естн, физико-химические и механические методы исследования, а также методы переработки полимеров. Рассматриваются реитгеиографи-ческие и спектроскопические способы изучения структуры полимеров, методы определения молекулярных весов, электрофизика высокомолеку-лярны.х соединений. [c.4]

    Если сопоставлять механические свойства каучуков обеих групп с их химической структурой и физической природой, то можно получить ключ к пониманию различия в свойствах. Каучуки первой группы имеют регулярное строение линейных полимеров с ответвлениями в виде метильных групп или атомов хлора. Наличие этого рода боковых групп очень важно. Полиэтилены, обладающие также весьма упорядоченной структурой и очень рысоким молекулярным весом, не проявляют каучукоподобных свойств, отличаясь от полиизобутиленов только отсутствием каких бы то ни было боковых групп. Все каучуки первой группы в силу упорядоченности своего строения обладают способностью кристаллизоваться при растяжении. Считают [2], что кристаллиты, образующиеся при растяжении, и играют роль усиливающих наполнителей в этих каучуках. [c.424]

    Крахмал. Первые исследования затрагивали увеличение растворимости крахмала в холодной воде, обусловленное механическим воздействием. В 40-х годах выполнены систематические исследования по действию измельчения на структуру и свойства картофельного крахмала [350, 449, 450, 747. Измельчение приводит к разрушению зерен, исходная дифракционная картина рентгеновского излучения исчезает. При длительном измельчении в течение 100 ч крахмал становится полностью недвулуче-преломляющим и растворимым в холодной воде [449], Лампитт с соавт, [450] обнаружили, что сначала уменьшается только молекулярная масса фракции, растворимой в горячей воде. На второй стадии падает общая молекулярная масса. Изменение молекулярной массы выражалось в изменении или вязкости, или способности к восстановлению в растворе меди. Грюн и Аугустат [36, 308] показали, что значительная деполимеризация амилозы и амилопектина протекает при измельчении с образованием декстринов. Растворимость измельченных продуктов в холодной воде также возрастает. Конечная степень полимеризации зависит от условий измельчения (например, материала шаров и степени заполнения). Степень измельчения не зависит от природы газовой среды — кислорода, воздуха или азота (рис. 6.31), Однако эффективность разрушения зависит от содержания воды. Был сделан 238 [c.238]

    Аналогично можно рассчитать и другие свойства наполнепных систем на первой стадии вулканизации. На второй стадии уирочне-ния наполненной системы — при переходе физических связей в химические при соответствующей температуре (вулканизация, спекание) — между молекулами связующего, а также между молекулами связующего и наполнителя возникают пространственные связи. Молекулярная структура и соотнощение компонентов в УНС, а также соотношение в них физических и химических связей позволяют определить механические, физико-химические и эксплуатационные свойства наполненной системы. [c.84]

    Эта гипотеза встречает серьезные возражения. Уже в цитированных выше исследованиях ГрозНИИ было показано, что парафин молекулярно диспергируется в жидких углеводородах и что твердые парафины не набухают в последних. Далее, теорией сольватации невозможно объяснить застывание масел, содержащих 1—2% парафина, а также п )одолжительность тиксотропного восстановления гелей парафина, ранее подвергшихся механическому разрушению, достигаюшую нескольких суток, в то время как при сольватационном механизме застудневания восстановление разрушенной структуры происходит в продолжение нескольких минут [81. [c.89]

    Здесь будут рассмотрены предельная деформация цепей, кинетика образования свободных радикалов механическим путем и их реакций, начало роста и распространение обычных трещин, трещин серебра , а также дано объяснение сопротивления и критического коэффициента интенсивности напряжений и удельной энергии разрушения с точки зрения представлений о молекулярной структуре. Хотя основной интерес представляют именно эти вопросы, оказалось невозможным привести всю литературу по перечисленным проблемам. Автор заранее просит извинить его за все намеренные и случайные пропуски, которые будут обнаружены. Во веяком случае, в этой книге упоминается известная литература по морфологии, вязкоупругости, деформативности и разрушению полимеров. Надеюсь, что для объяснения разрушения полимеров с точки зрения молекулярных представлений она будет полезным дополнением к данной монографии. [c.7]

    Бесспорно, что большое число разрывов цепей в процессе механического воздействия [1] само по себе не служит ни доказательством, ни даже указанием на то, что релаксация макроскопического напряжения, деформирование и разрушение материала являются следствием разрыва таких цепей. Как отмечали Кауш и Бехт [2], полученное число разорванных цепей намного меньше (с учетом их потенциальной работоспособности) их числа, необходимого для объяснения уменьшения фиксируемого макроскопического напряжения. Как показано на рис. 7.4, релаксация напряжения в пределах ступени деформирования (0,65%) равна 60—100 МПа. Однако если полагать, что проходные сегменты пересекают только одну аморфную область, то изменение нагрузки, соответствующее работоспособности 0,7-10 цепных сегментов, разорванных на данной ступени деформирования, составляет 2,4 МПа. Оно будет равным 2,4 МПа, если проходные сегменты соединяют п подобных областей. Б этом и большинстве последующих расчетов будет использована сэндвич-модель волокнистой структуры, подобная показанной на рис. 7.5 (случай I). Очевидно, что в случае п = 1 величина релаксации макроскопического напряжения в 25—40 раз больше уменьшения накопленного молекулярного напряжения, рассчитанного исходя из числа экспериментально определенных актов разрыва цепей. Однако в данном случае также следует сказать, что подобное расхождение результатов расчетов само по себе не является ни доказательством, ни даже указанием на то, что релаксация макроскопического напряже- [c.228]


Смотреть страницы где упоминается термин Структура молекулярная также тип механический и тип молекулярной: [c.488]    [c.426]    [c.224]    [c.56]    [c.64]    [c.336]    [c.312]    [c.24]    [c.40]   
Сочинения Теоретические и экспериментальные работы по химии Том 1 (1953) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Структура молекулярная



© 2025 chem21.info Реклама на сайте