Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основы процесса химического восстановления металлов

    Окисление — восстановление — один из важнейших процессов природы. Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд биологических процессов в основе своей являются окислительно-восстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления — восстановления. Получение простых веществ, например железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д., и ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов и т. д. было бы невозможно без использования окислительно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа пер-манганатометрия, иодометрия, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.51]


    ОСНОВЫ ПРОЦЕССА ХИМИЧЕСКОГО ВОССТАНОВЛЕНИЯ МЕТАЛЛОВ [c.201]

    В химии окислительно-восстановительные реакции принадлежат к числу наиболее распространенных. В основе технического производства таких важнейших химических продуктов, как аммиак, азотная кислота, серная кислота, металлы, процессов сжигания топлива и горения лежат реакции окисления — восстановления. Дыхание, усвоение растениями СО2 с выделением кислорода, обмен веществ и другие биологически важные процессы также представляют собой реакции окисления — восстановления. [c.28]

    К окислительно-восстановительным относят реакции, в ходе которых изменяется степень окисления элементов. Эти реакции принадлежат к числу самых распространенных химических реакций. Реакции окисления — восстановления протекают при горении твердого, жидкого и газообразного топлива. Почти все металлы получаются восстановлением из руд. Коррозия металлов заключается в их окислении. Многие важные химические продукты могут быть получены посредством реакций окисления — восстановления, например, азотная кислота из аммиака, серная кислота из серы и сульфидов. Вся электрохимическая промышленность (получение хлора, водорода, щелочей, хлоратов, пероксидов и т. д.) основана на реакциях окисления — восстановления. За счет этих реакций работают химические источники тока (аккумуляторы и элементы). Они лежат в основе фотографических процессов, тканевого дыхания, процессов пищеварения, брожения, фотосинтеза. [c.60]

    При изучении металлов учащиеся знакомятся с основами металлургических процессов. Основной задачей изучения этих вопросов является развитие теоретических и политехнических знаний, применение знаний для решения производственных вопросов. Химическая сущность металлургического производства раскрывается на общих понятиях о принципах восстановления металлов из природных руд. Применяя проблемный подход, можно [c.59]

    Если восстановленный металл служит лишь токопроводящей основой для нанесения гальванических или химических покрытий, то сразу же после промывки в проточной воде можно проводить следующий процесс. Хорошая адгезия покрытий, полученных сорбционным способом, делает его особенно целесообразным для отделки изделий, которые нуждаются в последующей электрохимической металлизации. [c.81]


    На поверхность металла порошки могут быть нанесены либо непосредственно в процессе электрохимического или химического восстановления ионов металла из раствора, либо путем напыления или намазывания вместе со связкой, которая при той или иной обработке (например, спекании) обеспечивает прочное сцепление порошка с основой. [c.28]

    В процессе химического осаждения палладия большое положительное значение имеет его автокаталитический характер. Сразу же после выделения на поверхности металла-основы тончайшего слоя палладия он проявляет высокую каталитическую активность, что благоприятствует реакции восстановления ионов 226 [c.226]

    Переходные металлы способны катализировать многие химические реакции, такие практически важные, как превращения углеводородов, синтезы на основе СО, восстановление нитросоединений, окисление этилена и метанола, синтез и окисление аммиака и ряд других. Даже наиболее простые реакции, протекающие на металлах, включают несколько последовательно-параллельных стадий. Основным реакциям сопутствуют процессы, приводящие к образованию побочных продуктов. На соотношение скоростей отдельных стадий существенное влияние оказывают как химическая природа металла, так и структура его поверхности, зависящая в свою очередь от способа приготовления и последующих обработок катализатора. [c.24]

    В литературе начинают появляться объяснения отдельных каталитических реакций. Постепенно, с накоплением опытных данных, эти объяснения перерастают в первые гипотезы, пытающиеся объяснить сущность каталитического процесса. Вначале это были физические теории, в основе которых лежали наблюдения за каталитическими процессами на поверхности металлов. На эти воззрения оказали влияние электрохимическая теория Берцелиуса, а позже — адсорбционная теория, разработанная Ленгмюром, Тейлором и др. Долгое время химические концепции развивались параллельно и независимо от физических теорий. Очень разнообразные по деталям химические гипотезы объединялись идеей перехода каталитической реакции через промежуточные, неустойчивые, но определенные соединения реагирующих веществ с катализатором и последующим восстановлением катализатора, [c.362]

    Вопрос о механизме взаимодействия компонентов химических реакций, в результате которых в начальный момент химического процесса образуется кристаллическое вещество, пространственно разделяющее реагирующие вещества, лежит в основе изучения таких процессов, как окисление металлов и сплавов, восстановление руд, закалка и отпуск сплавов, получение керамики (например, образование ферритов, титаната бария и т. д.). [c.358]

    Технология процессов осаждения покрытий химическим восстановлением разрабатывается главным образом на основе опытных данных, полученных при исследовании влияния на процесс различных факторов. Основными факторами являются концентрация и природа составных компонентов солей металла, буферирующих, комплексообразующих и стабилизирующих добавок, кислотность рабочего раствора, природа покрываемого металла, температура, давление, ультразвуковые и высокочастотные электромагнитные колебания и т. д. [c.7]

    Гетерогенные процессы, проходящие на поверхности раздела кристалл — газ, чрезвычайно многообразны такие реакции щи-роко используются в химической технологии. Из множества этих реакций ниже рассмотрены четыре группы процессов горение твердого топлива, восстановление оксидов металлов, процессы, лежащие в основе газовой коррозии, и гетерогенный катализ. [c.230]

    Значение окислительно-восстановительных реакций. Окисли тельно-восстановительные реакции имеют большое значение для химии. К их числу принадлежит больше половины всех реакций, изучаемых ею. Окислительно-восстановительные процессы важны для биологии и Б технике. Так, явления окисления-восстановления лежат в основе процессов дыхания и горения, добывания металлов из руд, коррозии металлов, а также электрохимических процессов (получение покрытий гальэаннческим путем, приготовление ряда важных препаратов). Окислительно-восстановительные реакции широко используются в аналитической химии, в синтезе ряда важные для практики препаратов и продуктов химической промышленности (азотная кислота, белильные соли и ряд других). [c.286]

    Наиболее важна и многообразна группа химических процессов, связанных с изменением химического состава и свойств веществ. К ним относятся процессы горения — сжигание топлива, серы, пирита и других веществ пирогенные процессы — коксование углей, крекинг нефти, сухая перегонка дерева электрохимические процессы — электролиз растворов и расплавов солей, электроосаждение металлов электротермические процессы — получение карбида кальция, электровозгонка фосфора, плавка стали процессы восстановления — получение железа и других металлов из руд и химических соединений термическая диссоциация — получение извести и глинозема обжиг, спекание — высокотемпературный синтез силикатов, получение цемента и керамики синтез неорганических соединений — получение кислот, щелочей, металлических сплавов и других неорганических веществ гидрирование — синтез аммиака, метанола, гидрогенизация жиров основной органический синтез веществ на основе оксида углерода (II), олефинов, ацетилена и других органических соединений полимеризация и поликонденсация — получение высокомолекулярных органических соединений и на их основе синтетических каучуков, резин, пластмасс и т. д. [c.178]


    Таким образом, любая трактовка процессов коррозии металлов становится возможной лишь на основе представлений электрохимической кинетики. Ионизация металла и процесс ассимиляции электронов каким-либо агентом (очень часто роль последнего принадлежит ионам водорода или молекулярному кислороду, неизменно присутствующему во всех случаях, когда коррозионная среда контактирует с атмосферой) представляют электрохимические процессы, В отличие от обычных химических реакций электрохимические процессы не только контролируются концентрацией реагирующих веществ, температурными условиями и другими параметрами, но и главным образом зависят от потенциала металлической поверхности, на которой они протекают. Это относится как к скорости ионизации металла, так и к восстановительному процессу разряда ионов водорода или электрохимическому восстановлению кислорода — этим двум основным процессам, приводящим к связыванию освобождающихся электронов металла.  [c.4]

    Развитие работ по созданию металло-воздушных аккумуляторов и комбинированных систем ЭХГ — электролизер потребовало разработки бифункционального (химически обратимого) кислородного электрода. На таком электроде процесс восстановления кислорода во время разряда аккумулятора должен сменяться его выделением при заряде. Схема конструкции бифункционального электрода на основе углеродных материалов [42, 256] представлена на рис. 97. С целью отвода кислорода, который выделяется в цикле заряда, активный слой электрода изготавливается из смеси гидрофильных и гидрофобных агломератов. Последний служит для отвода и подвода газа. Гидрофильные агрегаты иро-мотированы серебром и содержат, кроме того, некоторые соединения, препятствующие растворению серебра в щелочном электролите. [c.221]

    Выше было показано, что железо не дает возможности получить высокую производительность по водороду при разложении па нем водяного пара и что такая возможность появляется лишь в том случае, если применять контакты на основе окислов железа с добавками некоторых окислов металлов. Поэтому большое внимание будет уделено физико-химическим закономерностям восстановления контактов, являющихся наиболее активными в процессе разложения водяного пара. [c.50]

    Для производства порошков дисперсноупрочненного никеля (сплав ВДУ-2Р) используется химическое соосаждение. В основе метода лежит процесс совместного осаждения нерастворимых соединений никеля и образующего упрочняющую фазу металла, обеспечивающий близкое к молекулярному распределение компонентов. Термическое разложение осадка приводит к образованию тонкой смеси оксида матричного металла (в данном случае - закиси никеля) и упрочнителя, которая переводится в порошок дисперсноупрочненного никеля селективным восстановлением закиси никеля водородом. [c.403]

    Цель работы 1. Ознакомление с процессом осаждения меди на АБС-пластмассу (акрилбутадиенстирольные композиции) путем химического восстановления металла с использованием раздельной (универсальной или классической ) активации и сенсибилизации, а также с помощью совмещенного активатора. Оценка влияния различных способов активирования диэлектрика на сцепление покрытия, полученного методом хими-ко-гальванической металлизации, с основой. [c.99]

    Основы процесса. Процесс химического восстановления меди, так же как и никеля, имеет каталитическую природу, т. е. осаждение металла начинается только на активной поверхности катализатора и продолжается автокаталитически уже на меди. Реакция начинается при наличии на поверхности диэлектрика 0.3 — 0,5 г/м палладия. [c.67]

    Теоретические основы доменного процесса. Шихтовые материалы, посгупившие в печи, перемещаются вниз, проходят через зоны разной степени нагрева и под действием кдуших навстречу горячих газов, испытывают сложный комплекс физико-химических превращений. В этих материалах последовательно происходит испарение гигроскопической и кристаллизационной воды, разложение карбонатов, восстановление железа и других металлов из их окислов, науглероживание железа, плавление металла, образование и плавление шлаков, горение топлива и т. д. [c.177]

    Основные научные исследования посвящены разработке физико-химических проблем пирометаллур-гических процессов. Создал основы теории высокотемпературного восстановления и обнаружил ступенчатый характер восстановления кремнезема. Исследовал связь физических свойств твердых и жидких сплавов и соединений переменного состава со структурой ближнего порядка. Разработал статистико-термодинамическую теорию -ЖИДКИХ сплавов с сильным меж-частичным взаимодействием. Изучил теплофизические характеристики переходных металлов и сплавов на их основе, а также параметры, характеризующие поведение в них водорода. [c.134]

    Восстановление тетрахлоридов магнием лежит в основе хорошо известного процесса Кролля для получения таких химически активных металлов, как титан и цирконий. Хотя металлотермическое восстановление тетрахлорида с точки зрения термодинамики возможно и для урана, однако практическое осуществление его затруднено исключительно высокой гигроскопичностью иС14. Эта соль жадно поглощает воду из воздуха и при высушивании [c.156]

    В работе автора [1] указано на существование термодинамических причин явлений перенапряжения в электрохимических реакциях. Одновременно установлены общие термодинамические зависимости перенапряжения от природы металла. Предсказанная на основе термодинамического рассмотрения связь между химическим потенциалом электронов в металле и перенапряжением действительно наблюдается в процессах электролитического выделения водорода из водных и из спиртовых растворов, а также в процессах катодного восстановления кислорода, в процессах электролитического выделения кислорода из водных растворов и в др. процессах. Представляется целесообразным использовать также кинетический подход для установления с вязи между перенапряжением водорода и природой металла. Нам представляется, что для этой цели может быть полезным применение некоторых положений мультиплетной теории катализа, развитой академиком Баландиным и оказавшейся весьма плодотворной для понимания результатов многих каталитических реакций. Естественно предполагать, что водородные атомы, возникающие в процессах разряда водородных ионов на электроде, являются адсорбированными и деформированными. В соответствии с мультиплетной теорией можно предположить, что радиус деформированного водородного атома, находящегося на поверхности металла, равен атомному радиусу металла. В соответствии с теорией Бора электрон с водородном атоме, имеющем [c.120]

    Диффузионные покрытия образуются при взаимной диффузии (возможно, сопровождаемой химическим взаимодействием) компонентов основы и среды — источника диффувантов. В качестве последней могут выступать твердые, газовые и жидкие среды. Для покрытий этого класса характерна высокая адгезия с основой. Широкое распространение получили методы нанесения диффузионных покрытий, при которых компоненты поступают к поверхности подложки в виде паров элементов или их газообразных соединений, например галогенидов. В последнем случае диффузионному процессу предшествуют химические реакции (восстановление, диспропорционирование). Распространен, в частности, порошковый метод, в котором обрабатываемый металл или сплав загружают в порошок (пороипси) насыщающих элементов или их соединений (парофазное нанесение). В газофазном порошковом методе в смесь вводят активатор, например галогениды металлов или аммония, переносчики элементов покрытия. [c.432]

    Процессы, при которых имеют место взаимные превращения химической и электрической энергии, называются электрохимическими процессами, а наука, изучающая их, электрохимией. Подобного рода процессы имеют самое широкое распространение в производственной практике, являясь основой ряда крупнейших отраслей промышленности, как-то а) производства едких шелочей (NaOH и КОН) и хлора путем электролиза водных растворов хлоридов соответствующих щелочных металлов (Na l или КС1) б) синтеза некоторых неорганических и органических продуктов при помощи электролитического окисления или восстановления исходных веществ (получение хлоратов, персульфатов, перхлоратов, перборатов, перманганата, йодоформа и др.)  [c.343]

    Такое исследованже также важно для изучения состава газов, получаемых (при окислении топлив кислородом) окислов металлов и чистоты получаемого водорода. Только знание физико-химических условий стационарного процесса окисления и восстановления контактов и состава получаемых при этом газов позволит разработать принципиальные основы непрерывных методов получения водорода. Такое исследование дает возможность определить оптимальные кинетические параметры в каждой стадии процесса, способствующие эффективному и наиболее полному использованию восстановителя и окислителя. [c.113]

    Много работ, основой которых служит экспериментальный материал по химическому равновесию. Теми или иными методами (тензиметрическим, методом э. д. с., методом равновесия с окислительно-восстановительными смесями) изучены процессы восстановления водородом — окислов [7067— 70911, сульфидов [7092—71011, галогенидов [7102—71061, карбидов [Л 07—7113] и кислородсодержащих солей [7114—7123, 7126, 7127] углеродом — окислов [7128—7143] и других веществ [7144—7151] окисью углерода — окислов [7152—7166], сульфидов [7166—7169] и кислородсодержащих солей [7170 — 7180]. К ним надо присоединить системы, содержащие различные окислы, как простые [7181—71851,7187—72631, так и смешанные (твердые растворы) [7264—72931, сульфиды — индивидуальные [7294—7345] и бинарные [7346—7350], а также селе-ниды [6457, 7351—7362] и теллуриды [7363—7374]. Работы [7375—7391] и [7392—7447] относятся соответственно к гало-генидам и их смесям. В число последних входят и работы [7424—74471, посвященные масс-спектрографическому исследованию термодинамических свойств бинарных систем, образованных фторидами металлов. В них разработана методика определения состава и давления пара в этих системах. Были изучены также системы, содержащие карбиды [7448—7467], силициды [7468—7475], нитриды [7476—7483], фосфиды [7484—7491], арсениды [7492— 7499], стибниды [7500—7508], гибриды [7509—7511], соединения металлов с различными элементами [5182, 7510—7517] и друг с другом [7518—7548]. Кристаллогидратам посвящены работы [7549—7570], термической диссоциации различных веществ [7571—7601]. В [7602—7632] изучены процессы взаимодействия с различными веществами, в [7633—7652] реакции окислов с разнообразными соединениями, в [7653—7660] реакции с кислородом, в [7661—7676] с сульфидами, в [7677—7680] с хлоридами. Работы [7681—7690] освещают реакции диспропорцио- ироваиия, а [7691—77181 водосодержащие системы. [c.60]

    Химический метод металлизации технологичен, высокопроизводителен и не требует сложного оборудования. Наиболее целесообразно использовать его для получения электропроводящего слоя под гальваническое покрытие. В основе химической металлизации лежат окислительно-восстановительные реакции, при которых происходит восстановление на поверхности облученного полиэтилена одного реагирующего вещества — иона металла и одновременное окисление другого иона. Процесс можно проводить в ваннах и при разбрызгивании раствора с помощью пистолета-распылителя последний способ более экономичен и производителен, дает более электропроводные покрытия с хорошей адгезией к облученному полиэтилену. Однако локальное осаждение металла на ограниченных участках представляет значительные трудности. Усовершенствование метода привело к разработке сорбционной химической металлизации, при осуществлении которой обязательно требуется химическое активирование поверхности материала, т. е. введение в поверхностный слой или образование на нем функциональных групп — сульфогрупп — SO3H, гидроксильных —ОН, карбоксильных —СООН, способных сорбировать ионы металла или их комплексы. При использовании защитных лаков становится возможной локальная металлизация только предварительно активированной поверхности. Оба способа химической металлизации дают возможность получать гладкие, блестящие или матовые металлические покрытия с высокой прочностью их сцепления с полиэтиленовым основанием. Сорбционный способ дает очень хорошие результаты при металлизации профилированных изделий независимо от их размеров и формы. [c.264]

    В настоящее время имеются методы осаждения в виде покрытий 12 металлов (см. табл. 6) в основном это элементы групп железа, меди и платины. В литературе, особенно патентной, описано получение химическим путем покрытий хромом, кадмием. Однако в этих случаях возникают некоторые сомнения относительно характера таких процессов. Так, все попытки реализовать автокаталитнческий процесс восстановления хрома, описанный в ряде патентов, оказались безуспешными. С помощью растворенных восстановителей не удается вообще восстановить ионы хрома до металла из водных растворов возможно только контактное осаждение хрома при использовании алюминия. Для кадмия описаны лишь методы осаждения на металлы однако в таком случае не исключена возможность иммерсионного осаждения покрытия — восстановления за счет растворения металла основы. Поэтому автокаталитнческий характер подобных процессов должен быть доказан путем осаждения покрытия на тот же металл или на инертную подложку диэлектрика. [c.58]

    Наиболее изученным случаем (в силу его практической значимости) является взаимодействие адгезионных соединений с водой [310], приводящее к почти полному отделению адгезива от субстрата [310-312] даже тогда, когда высокополярные растворители не оказывают влияния на прочность систем с межфазными химическими связями. Этот эффект зависит от продолжительности обработки систем водой. Соответствующую зависимость можно выразить в логарифмической форме [313]. Величина наблюдаемого эффекта в существенной мере определяется природой субстрата так, полиэтилен чувствительнее к действию воды, чем полика-проамид [314] алюминий, титан и сталь чувствительнее, чем медь [312]. Применительно к полимерам подобные закономерности Яхнин связывает с изменением надмолекулярной организации-с укрупнением глобулярных образований в процессе водопоглощения и восстановлением их первоначальных размеров после высущивания [311]. Следовательно, после удаления воды первоначальная прочность адгезионных соединений может восстанавливаться вплоть до исходной. Этот вывод находит подтверждение в системах, в которых существует сетка дисперсионных связей, например в металлополимерных соединениях, полученных с применением полиэтилена, поликапроамида [315] и сополимера бутилметакрилата с метакрило-вой кислотой [311], причем в первом случае обратимое изменение прочности проявляется при воздействии на систему с последующим удалением не только воды, но также бензола, ксилола и ацетона. Подобные эффекты недавно обнаружены для образцов полистирола, помещенных в водно-мета-нольные смеси [316]. Более того, такой эффект наблюдается в соединениях с межфазной сеткой водородных связей, например в системе металл-эпоксидный адгезив [317], или в композитном материале на основе эпоксидной композиции, армированной углеродными волокнами [318]. Прямое доказательство существования обсуждаемого эффекта получено Оуэнсом на [c.74]

    В монографии систематизированы и критически обобщены имеющиеся сведения о ряде реакций синтеза и превращений органических соединений серы, протекающих в присутствии металлов, их оксидов, сульфидов и комплексов. Обсуждены закономерности процессов синтеза тиолов, диалкилсульфидов, тиацикяоалканов, тио-фенов, реакций окисления молекулярным кислородом сульфидов до сульфоксидов и сульфонов и восстановления тиолен-1,1-диоксидов в тиолан-1,1-диоксид. На основе результатов исследования, полученных с применением различных физико-химических методов, и опираясь на представления о химической сущности явления катализа, установлен механизм протекания каталитических реакций органических соединений серы и определены границы использования катализаторов. [c.2]


Смотреть страницы где упоминается термин Основы процесса химического восстановления металлов: [c.141]    [c.74]    [c.224]    [c.226]    [c.26]    [c.50]    [c.226]    [c.210]    [c.51]    [c.49]    [c.455]   
Смотреть главы в:

Электролитические и химические покрытия -> Основы процесса химического восстановления металлов




ПОИСК





Смотрите так же термины и статьи:

Восстановление металлами

Металлы химические

Основы процессов



© 2025 chem21.info Реклама на сайте