Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скрининг рекомбинантных клонов

    СКРИНИНГ КЛОНИРОВАННЫХ ПОПУЛЯЦИЙ РЕКОМБИНАНТНЫХ МОЛЕКУЛ а. Обнаружение нужного клона [c.292]

    Иммунологический скрининг. Для скрининга рекомбинантной популяции в отношении экспрессии данного гена используют более общий метод, в основе которого лежит иммунологический подход. Синтезируемый белок в этом случае не должен быть функционально активным необходимы лишь специфические антитела к нему и клетки хозяина, не синтезирующие данный антиген. Антитела взаимодействуют с белковыми молекулами одного клона. Их выявляют по аккумуляции радиоактивности, источником которой служат либо меченые антитела, либо специфические меченые реагенты, узнающие иммуноглобулины (например, белок А Staphylo o us aureus). [c.300]


    Определив последовательность нескольких N-концевых аминокислот белка, можно в соответствии с генетическим кодом синтезировать ряд олигонуклеотидных зондов и использовать их для скрининга клонотеки генов. В этом случае удобнее использовать экспрессирующую клонотеку кДНК, так как для получения необходимой информации нужно будет исследовать меньшее количество клонов. Действительно, в клонотеках кДНК отсутствует большинство некодирующих последовательностей нуклеотидов, суммарная длина которых может значительно (на два-три порядка) превышать таковую значимых последовательностей. Однако при использовании таких клонотек особенно остро встает вопрос об их репрезентативности, поскольку внутриклеточное содержание индивидуальных мРНК сильно различается в клетках разных тканей. После выделения рекомбинантной ДНК, гибридизующей-ся с упомянутыми выше олигонуклеотидными зондами, можно [c.251]

    Способы получения требуемых последовательностей нуклеотидов из клонотек генов можно разделить на три группы. При использовании первой группы методов рекомбинантные бактерии или фаговые частицы исследуют на присутствие в них искомых последовательностей нуклеотидов путем последовательного перебора случайных клонов. При таком подходе, получившем название скрининга, творческие усилия исследователя направлены только на облегчение самого процесса анализа клонов, например, на его автоматизацию. Во втором случае, присутствие нужных последовательностей обнаруживают косвенно, по появлению в бактериальных клетках или фаговых лизатах бляшек продуктов экспрессии искомых генов - РНК, белков или ферментативной активности, т.е. определенного фенотипа, который отличает такие клоны от соседних, не содержащих соответствующих последовательностей. В этом случае исследователь среди большого количества суммарных клонов осуществляет выбор тех, которые резко отличаются от соседних по своему фенотипу, например, цвету колоний. При таком подходе производится выбор требуемого фенотипа среди большого числа других фенотипов. Реализация третьего подхода требует создания селективных условий, при которых преимущество в размножении получают те клоны, которые отвечают требованиям отбора, например, приобрели способность к росту на селективных питательных средах в присутствии антибиотика или в отсутствие аминокислоты в случае исходно ауксотрофного штамма. Последний подход, кроме своего необыкновенного изящества в замысле, демонстрирует самую высокую эффективность, так как позволяет в одно касание освободиться от всех нежелательных примесей в виде ненужных клонов. [c.162]


    В том случае, когда ожидается с высокой вероятностью экспрессия клонированного гена, методы скрининга рекомбинантных клонов основываются либо на изменении фенотипа клетки под влиянием вновь синтезированного белка, либо просто на свойствах самого белка. Например, если необходимо изолировать гены Е. соИ, ответственные за биосинтез какой-либо аминокислоты, то отбирают рекомбинантные клоны, трансформируя гибридные плазмиды в ауксотрофные по биосинтезу аминокислот мутанты и получая прототрофные клоны. Это и есть тест на комплем 1и тацию. Прием очень удобный, но он исполь зуетея-ТУбычнопри самоклонировании , т. е. при переносе генов на многокопийных плазмидах в тот же микроорганизм, и требует наличия штаммов с хорошо охарактеризованными мутациями искомых генов. [c.154]

    После отмывки фильтров от несвязавшегося радиоактивного зонда их высушивают и анализируют с помощью авторадиографии с использованием чувствительной к радиоактивному излучению рентгеновской пленки. Образование специфических гибридов обнаруживают после проявления рентгеновской пленки по появлению на ней четких гибридизационных сигналов в виде темных пятен, положение которых точно соответствует таковому определенных колоний или бляшек на исходной чашке Петри. В результате проведения исследования идентифицируются бактериальные колонии или фаговые бляшки, содержащие искомые рекомбинантные ДНК. С этого момента с помощью обычных микробиологических и биохимических методов можно получать неограниченное количество идентичных копий клонированной последовательности нуклеотидов ДНК для дальнейших исследований. В ряде случаев, когда нет необходимости в скрининге большого числа клонов, гибридизацию с зондами можно заменить ПЦР. При таком подходе в качестве источника матричной ДНК используют суспензию бактериальных клеток или фаговых частиц отдельных клонов без специальной очистки матричных нуклеиновых кислот. [c.163]

    Другой метод скрининга применяют при клонировании клеток животных, в которых экспрессируется рекомбинантный ген (или ьДНК), кодирующий секретируемый полипептид. При этом используют клетки хозяина, в норме не образующие полипептид, и тестируют среду, в которой находятся трансформированные клетки, на присутствие в ней данного полипептида. Если продуктом является гормон, то его присутствие в среде можно обнаружить с помощью какого-либо удобного высокочувствительного биологического метода. Таким же способом бьши клонированы гены, кодирующие факторы роста, которые стимулируют пролиферацию специфических клеток-мишеней. Если активность полипептида как такового трудно измерить, то используют специфичные к нему антитела. Этот метод непригоден для одновременного скрининга большой популяции клонированных клеток, содержащих разные рекомбинантные молекулы, поскольку для этого пришлось бы проводить слишком много (возможно, миллион) отдельных тестов. Вместо этого смесь трансформированных клеток подразделяют на удобное число отдельных групп и тестируют эти группы. Группу, дающую положительный ответ, снова подразделяют на подгруппы, вновь вьщеляют позитивную подгруппу, подразделяют ее, тестируют и так далее до тех пор, пока не будет идентифицирован один позитивный клон. [c.300]

    Для выявления рекомбинантных клонов, синтезирующих экзоглюканазу, использовали иммунный скрининг, позволяющий идентифицировать белок-мишень с помощью специфичных к нему антител секреция белка при этом необязательна. Рекомбинантные клетки лизи-ровали in situ (парами хлороформа), перенесли цитоплазматические белки на найлоновый или нитроцеллюлозный фильтр и провели иммунологический тест. Использованный при этом метод реплик позволил сохранить жизнеспособные клетки для дальнейших исследований. [c.298]

    Этот вариант скрининга обусловлен низким выходом интересующего рекомбинантного клона. Высев колоний в этом случае можно производить до нескольких десятков тысяч на 90-мИ чашку (лучше не более 30 ООО). Вместо нитроцеллюлозы для переноса бактериальных клонов лучше использовать бумагу Whatman 542 (или 540, 541), так как в этом случае не требуется исключительных навыков по одергиванию колоний с агара и, в отличие от НЦФ, не возникает проблем с неполным или неравномерным отпечатыванием колоний на фильтре. Гибридизацию зовда с ДНК, иммобилизованной на бумажных фильтрах щюводят гак же, как и в случае с НЦФ (см. далее). [c.32]

    В этой главе мы рассмотрим разнообразные типичные системы хозяин-вектор и первые три требования, которые имеют к этой теме прямое отношение, поскольку методы, используемые для скрининга и селекции, в основном зависят от определенных свойств используемой комбинации хо-зяин-вектор . Методы вьщеления желаемого рекомбинантного клона (требование 4) описаны в гл. 6. Отобранные нами примеры иллюстрируют основные принципы, которые применяются в настоящее время при конструировании систем, используемых в сложных экспериментальных ситуациях. [c.227]

    Носле разделения рекомбинантных молекул и получения отдельных клонов встает трудно разре-щимая задача—обнаружение нужного клона или клонов. Идентификация клона основывается на том, что вставка в рекомбинантной ДНК детерминирует какое-то уникальное свойство содержащей ее клетки. Это свойство может определяться структурой самой вставки (т.е. нуклеотидной последовательностью) либо быть связанным с ее функцией (т.е. продуктом экспрессии клонированного гена). На нем основывается скрининг популяции клонов с целью идентификации одного нужного клона. Методы скрининга должны быть очень чувствительными, поскольку иногда приходится идентифицировать один клон из сотен тысяч или даже миллионов клонов. [c.292]


    При реализации такого подхода из гена, клонированного в составе векторной плазмиды, по двум близко расположенным уникальным сайтам рестрикции вырезается фрагмент ДНК, в который требуется внести мутации, и на его место встраивается синтетический двухцепочечный олигонуклеотид, содержащий необходимые замены нуклеотидов (кассету мутаций). В этом случае, если в окрестностях мутагенизируемого локуса гена отсутствуют подходящие природные сайты рестрикции, их вводят с помощью направленного мутагенеза. Разработка автоматических синтезаторов ДНК сделала синтез олигодезоксирибонук-леотидов простой и даже рутинной процедурой. Более того, использование на некоторых этапах синтеза вместо одного нуклеотида смеси из двух, трех или даже всех четырех дезоксирибо-нуклеозидтрифосфатов позволяет получать за один прием сложную смесь олигонуклеотидов, которые могут содержать в определенных сайтах наборы кодонов для многих или даже всех 20 природных аминокислот. Это дает возможность осуществлять одновременный скрининг по искомому мутантному фенотипу большого числа разных мутантных клонов, полученных в одном цикле клонирования. С помощью кассетного мутагенеза можно определять функциональную роль отдельных сайтов и целых доменов в полипептидных цепях конкретных белков и создавать рекомбинантные белки с новыми, подчас неожиданными свойствами. [c.323]

    Для того, чтобы выделить из клонотеки пептиды с искомой биологической активностью, применяют различные методы скрининга. В частности, для выделения пептидов, имитирующих определенные эпитопы, используют биотинилированные моноклональные антитела (mAb) соответствующей специфичности, которые иммобилизуют на твердой подложке с помощью стрептавидина (рис. 47). Фаговые частицы, экспрессирующие на своей поверхности соответствующие эпитопы, взаимодействуют с антителами и задерживаются подложкой, тогда как другие рекомбинантные фаговые частицы удаляются в процессе промывания. Задержанные на подложке фаговые частицы элюируют буфером с низкими значениями pH, индивидуальные клоны дополнительно размножают в бактериальных клетках, и экспрессированные на них эпитопы исследуют по различным критериям. Наличие идентичных или сходных последовательностей нуклеотидов среди клонированных последовательностей свидетельствует о специфичности процесса очистки. Индивидуальные клоны затем охарактеризовывают другими, в частности иммуноферментными методами. На заключительной стадии осуществляют синтез выделенных пептидов и их всестороннее изучение в очищенном состоянии. [c.342]

    Фазмидные векторы так же как и фаговые, используют для клонирования кДНК и геномной ДНК. Эффективность упаковки рекомбинантных фазмид в фаговую головку с последующим инфицированием клеток Е. oh превосходит эффективность трансформации бактерий плазмидами в 100 раз. Это существенно облегчает конструирование банков генов, содержащих до миллиона независимых клопов, повышая тем самым вероятность изолирования редких клонов. И сам процесс скрининга в данном случае также существенно облегчен, так как рассев фагов на чашки может проводиться с высокой плотностью, а фон ложных ответов обычно мал (см. гл. 9). Однако большой размер фаговых и фазмидных векторов затрудняет рестрикционный анализ клонированных генов и их секвенирование, так что после нахождения [c.221]


Смотреть страницы где упоминается термин Скрининг рекомбинантных клонов: [c.30]    [c.4]    [c.231]    [c.280]    [c.212]    [c.277]    [c.113]    [c.287]    [c.161]    [c.352]    [c.300]    [c.354]   
Гены и геномы Т 2 (1998) -- [ c.227 , c.236 , c.277 , c.292 , c.293 , c.294 , c.295 , c.296 , c.297 , c.298 , c.299 , c.300 , c.301 ]




ПОИСК





Смотрите так же термины и статьи:

Скрининг клонов

клонит



© 2025 chem21.info Реклама на сайте