Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клонированные гены, экспрессия

Рис. 4.1. Клонирование рекомбинантной ДНК. Донор-ную ДНК расщепляют рестрицирующей эндонуклеазой и встраивают в клонирующий вектор. Полученную конструкцию вводят в попу ляцию клеток-хозяев, идентифицируют те клетки, которые содержат рекомбинантную ДНК, и культивируют их. При необходимости можно индуцировать экспрессию клонированного гена в клет-ках-хозяевах и получить кодируемый им белок. Рис. 4.1. <a href="/info/1391611">Клонирование рекомбинантной</a> ДНК. Донор-ную ДНК расщепляют <a href="/info/200438">рестрицирующей эндонуклеазой</a> и встраивают в <a href="/info/199908">клонирующий вектор</a>. <a href="/info/1734454">Полученную конструкцию</a> вводят в попу <a href="/info/535604">ляцию</a> клеток-хозяев, идентифицируют те клетки, которые содержат рекомбинантную ДНК, и культивируют их. При необходимости можно индуцировать <a href="/info/1530119">экспрессию клонированного гена</a> в клет-ках-хозяевах и получить кодируемый им белок.

    Основная цель экспериментов по клонированию генов, которые предполагается использовать в биотехнологии, — подбор условий для эффективной экспрессии в нужном организме-хозяине. К сожалению, сам факт встраивания того или иного гена в клонирующий вектор еще не означает, что этот ген будет экспрессирован. В то же время, чтобы получение коммерческого продукта было экономически оправданным, уровень его синтеза должен быть достаточно высоким. Для достижения эффективной экспрессии уже сконструировано много специфических векторов для этого проводились манипуляции с целым радом генетических элементов, контролирующих процессы транскрипции и трансляции, стабильность белков, секрецию продуктов из хозяйской клетки и т. д. Среди молекулярно-биологических свойств систем экспрессии наиболее важны следующие 1) тип промотора и терминатора транскрипции 2) прочность связывания мРНК с рибосомой 3) число копий клонированного гена и его локализация (в плазмиде или в хромосоме хозяйской клетки) 4) конечная локализация синтезируемого продукта 5) эффективность трансляции в организме хозяина 6) стабильность продукта в хозяйской клетке. [c.105]

    ДНК попадает в ядро. Однако вирусные векторы имеют ряд недостатков они дорогостоящи и часто обладают ограниченной клонирующей емкостью, что не позволяет регулировать экспрессию терапевтического гена с помощью тканеспецифичных последовательностей. Кроме того, вирусные белки могут вызывать воспалительную реакцию, что исключает повторное введение вектора. Поэтому были разработаны невирусные системы доставки генов. [c.499]

    Использование основных приемов работы с рекомбинантной ДНК и методик анализа белков и нуклеиновых кислот позволяет клонировать гены и изучать их организацию (блоттинг-гибридизация по Саузерну), строение мРНК (нозерн-блоттинг),. а также следить за уровнем экспрессии генов в различных условиях окружающей среды и даже в процессе развития. Например, в некоторых случаях уровни транскрипции гена определяют методом дот-блот-гибридизации выделенной РНК (разд., 6.3). Более подробные качественные исследования транскрипционной активности осуществляют с помощью нозерн-блоттинга (приложение 6 [I]). 5 - и З -концы транскриптов определяют, используя Sl-картирование [2, 56]. Однако такие методы анализа позволяют установить только строение транскрибируемой области или гена, а также механизмы процессинга транскриптов и их трансляции. Функцию любых участков вне транскрибируемой последовательности в некоторой степени можно изучать, сравнивая гены, обладающие сходными механизмами регуляции. При этом большинство предположений о воздействии на экспрессию гена остаются исключительно в области догадок. В этом случае генетическая трансформация предоставляет исследователю, работающему с растениями, уникальную-возможность непосредственно отвечать на фундаментальные вопросы, касающиеся регуляторной функции последовательностей, расположенных как в непосредственной близости, так и на некотором расстоянии от 5 - и З -концов транскрибируемого-гена. Используя разнообразные методы мутагенеза in vitro и технологию рекомбинантных ДНК, удается, модифгщировать клонированные гены и затем после введения мутантного гена-путем генетической трансформации обратно в растения анализировать влияние изменения этого гена на его экспрессию.. Подобные методики способствовали изучению нуклеотидных [c.307]


    С использованием генно-инженерных подходов удалось изучить расположение этих генов в ДНК, а также зарегистрировать изменения структуры хроматина и ДНК, связанные с регуляцией экспрессии этих генов. Как а-, так и Р-глобиновые гены образуют кластеры тесно сцепленных генов. Оба кластера генов были клонированы в виде набора рекомбинантных фаговых векторов, содержащих перекрывающиеся фрагменты глобиновых генов, с использованием методов, описанных в гл. 9. Расположение генов внутри кластеров показано на рис. 16.17. Интересно отметить, что некоторые глобиновые гены представлены более чем одной копией (aj, аг, °у, у), причем на соответствующей стадии развития происходит одновременная экспрессия обеих копий. Удивительной особенностью организации кластеров оказалось то, что гены в них расположены в соответствии Ф порядком их экспрессии и все транскрибируются с одной и той же цепи ДНК. [c.230]

    Исходный димер объединяемых генов состоит из генов 1 и 2, объединенных линкером, содержащим подходящие сайты рестрикции (/) димер фрагментируют ДНКазой I и образовавшиеся концы затупляют нуклеазой S1 (2) отбирают фрагменты, размер которых соответствует длине одного гена плюс длина линкера, (3) переводят их в кольцевую форму лигированием по тупым концам и 4) линеаризуют с помощью рестриктазы по сайту, который находится в линкере образующаяся в итоге библиотека генов содержит гибридные молекулы ДНК, кодирующие N-концевую часть белка 2 и С-концевую часть белка 1 (5) химерные гены клонируют в экспрессирующем векторе сразу или после амплификации с помощью ПЦР с использованием по одному из праймеров, комплементарных концам объединяемых генов, которые соседствуют с линкером, и после экспрессии химерных генов получают клонотеку химерных белков [c.330]

    Клонируя гены секретируемых белков и удаляя затем кодирующую последовательность зрелой формы, можно создать молекулярные векторы экспрессии-секреции для грамположительных бактерий рода Ba illus. В первую очередь данный подход был реализован применительно к гену атуЕ. Этот ген кодирует -ами-лазу — один из наиболее изученных и имеющих практическое значение секретируемых ферментов многих штаммов бацилл. Бактери- [c.250]

    Молекулярная генетика развития делает свои первые шаги. Выявлены и клонированы гены, определяющие ключевые стадии развития. Начаты исследования особенностей пространственного распределения транскриптов генов и их продуктов в развитии эмбриона. Изучаются регуляторные элементы этих генов, в том числе те, от которых зависят закономерности пространственной экспрессии. Выявление гомеоблока, входящего в состав разных генов развития, позволило на.метить подходы к исследованию генов, контролирующих развитие у разных организмов. Обнаружены белки, кодируемые этими генами и взаимодействующие с ДНК. Однако решение сложной задачи расшифровки законов, по которым строится трехмерная структура организма, еще впереди. [c.218]

    Полночь. Вас разбудил коллега, чтобы поделиться еще одним грандиозным проектом. Он потратил два последних года на очистку белка, представляющего собой сильный модулятор иммунного ответа. Вечером он получил первые 30 аминокислот на аминокислотном анализаторе (рис. 5-43). Ему нужен ваш совет, как лучше клонировать ген, чтобы добиться высокого уровня ею экспрессии в бактериях. Он доказывает, что этот белок, благодаря стимулированию имунной системы, мог бы служить отличным средством для лечения простуды. Он и название ему уже подобрал - иммустим. [c.44]

    Неудача клонирования может быть связана и с отсутствием экспрессии клонированных генов rm. Гены рестрикции— модификации выявлены в самых различных таксонах (см. разд. 2, часть I). Клонирование их осуществляется практически исключительно в кишечную палочку. Имеющиеся сведения свидетельствуют, что в Е. oli удается клонировать гены rm из представителей таксонов генетически довольно отдаленных от кишечной палочки. Однако, вопрос о том все ли эти гены экспрессируются с собственных промоторов пока до конца де исследован. Методическое решение проблемы экспрессии видится в реализации нескольких подходов. В первую очередь следует обратить внимание на то, что большое число рестриктаз выявлено в штаммах, относящихся к семейству Enteroba teria-сеа (см. гл. 2, часть I) в которое входит и Е. oli. Учитывая большое генетическое родство между представителями энтеробактерий, следует предположить и меньшую вероятность получения отрицательных результатов по клонированию в кишечную палочку за счет барьера гетерологической экспрессии. [c.189]

    Двухцистронный вектор (Di istroni ve tor) Клонирующий вектор, предназначенный для экспрессии двух генов в одной клетке млекопитающих. Гены находятся под контролем одного промотора и сигнала полиаденилирования. [c.547]

    Эукариотические гены одних видов были также клонированы и экспрессировались в клетках других видов. Например, ген, кодирующий tx-цепь гемоглобина кролика, был введен в растущие в культуре мышиные клетки и экспрессировался в них. Внедрение чужеродного гена в эукариотические клетки не всегда, однако, сопровождается его транскрипцией и трансляцией с образованием активного белка. Регуляция экспрессии генов у эукариот пока еще мало изучена (разд. 29.22) во время написания этой книги проводится большое число исследований по выяснению условий экспрессии реком-бинантньк генов в эукариотических клетках. [c.988]


    Клонирование интерферона человека. Используя рекомбинантные ДНК, можно значительно увеличить наработку белков, присутствующих в клетке в малом количестве. Интерфероны-антивирусные, а возможно, и противораковые агенты-можно выделить из лейкоцитов человека, однако выход интерферона составляет всего 1 мкг из 1 л крови, поэтому при таком выделении он стоит очень дорого. Гены интерферонов можно клонировать и получить их экспрессию в бактериях, которые легко выращивать в количестве сотен и тысяч литров. [c.993]

    Генетическая селекция in vivo может обеспечить способность организма к разложению специфического вещества. Однако подобные методики нуждаются в длительном периоде селекции (8—10 мес, как описано выше) и основываются на случайном наборе генетического материала для получения желаемой катаболической системы. Использование методов рекомбинантной ДНК дает экспериментатору возможность соединять вместе определенные катаболические последовательности и контролировать экспрессию специфических генов. Уровень экспрессии, определяемый in vivo, зависит от регуляторных механизмов, кодируемых плазмидными последовательностями, и мало что можно сделать, чтобы повлиять на выход отдельных ферментов. Однако можно получить повышенный уровень генного продукта, клонируя определенные гены в векторах по направлению транскрипции промоторных последовательностей. [c.334]

    Учеными уже охарактеризованы десятки генов запасных белков злаков, бобовых и ряда других растений, изучены структура и регуляция экспрессии генов. Исследователи уже клонировали 10 генов гордеинов ячменя, гены а- и Р-глиадинов и глютенина пшеницы, зеинов кукурузы, легу-минов бобовых, пататина картофеля и др. Для некоторых генов определена их нуклеотидная последовательность. [c.66]

    Другая система предоставляет возможность для выделения дискретных точек начала репликации. Клетки дрожжей S. erevisiae, мутантные по какой-то функции, могут быть трансформированы путем добавления ДНК, которая несет копию гена дикого типа. Схема эксперимента представлена на рис. 31.13. Мутация клетки-хозяина должна затрагивать ген, продукт которого можно селектировать. ДНК клеток дикого типа выделяют, фрагментируют и клонируют в составе плазмид Е. oli. Гибридные плазмиды инкубируют с мутантными клетками дрожжей в таких условиях, в которых эти клетки способны выжить только в случае экспрессии гена дикого типа. В зависимости от частоты возникновения трансформированных клеток различают два типа трансформации. [c.403]

    Вследствие различия в механизмах экспрессии генов у прокариот и эукариот, Е. oli может оказаться хозяином, мало подходящим для производства белков эукариотических организмов. Поэтому разработаны методы получения векторов для клонирования различных генов в клетках дрожжей - одноклеточных эукариот. Эти клонирующие векторы получают из репликонов дрожжевых клеток, так называемых 2 л-плазмид. Точки начала репликации этих векторов взяты у плазмид 2 л и у pBR322, в результате чего они могут реплицироваться как в дрожжевых клетках, так и в . соИ. Примером использования дрожжей для синтеза белков посредством клонирования генов эукариот может служить осуществленный таким образом синтез интерферона человека (интерферон-белок, обладающий противовирусным действием в клетках человека и, возможно, противоопухолевым действием вообще). [c.290]

    Энхансер Р-глобина курицы расположен позади транскрипционной единицы Р-глобина. В последовательных поколениях эритроцитов (и только в них), он образует гиперчувствительный к нуклеазе сайт. Этот факт свидетельствует о том, что в эритроцитах с энхансером связаны белки-регуляторы. Для того чтобы ггдентифицировать их, следует определить, какая именно последовательность нуклеотидов необходима для проявления активности энхансера. Для этого мутантные последовательности энхансера объединяли с маркерным геном. Продукт такого гена легко определить это дает возможность судить о влиянии любой мутации энхансера на транскрипцию каждую рекомбинантную конструкцию вводили в эритроциты курицы и регистрировали эффективность экспрессии гена-маркера (рис 10-20). Те нуклеотиды, которые при таком тестировании оказываются необходимыми для активности энхансера, можно считать участками связывания специфических белков. С помогцью данной методики было установлено, что тагсих белков-три (рис. 10-21). Содержание каждого из них в клетке очень мало, но благодаря гому, что сайты их связывания известны, можно клонировать кодируюгпие последовательности ДНК и, следовательно, получать эти регуляторные белки в неограниченном количестве (см. разд. 9.1.7). [c.193]

    Глюкокортикоиды — это класс стероидных гормонов, регулирующих экспрессию генов (см. гл. 44). При попадании молекул глюкокортикоидов в клетку млекопитающих они связываются со стероидч пе-цифичным рецептором, который претерпевает при этом конформационные изменения в цитоплазме и проникает в ядро. Комплекс глюкокортикоид— рецептор взаимодействует со специфическим рецеп-тор-связывающим сайтом ДНК в 5 -регуляторной области стероид-зависимых генов, например гена вируса рака молочной железы мыши, на расстоянии в несколько сот пар оснований от сайта инициации транскрипции. Посадка комплекса на рецептор-свя-зывающий сайт, судя по всему, приводит к более эффективному использованию промотора РНК-полимеразой, усиливая таким образом экспрессию стероид-зависимых генов. Область ДНК, связывающаяся с гормон-рецепторным комплексом, также может быть клонирована и присоединена к другому структурному гену. После встраивания таких химерных конструкций в геном культивируемых клеток млекопитающих репортерные структурные гены приобретают способность контролироваться содержанием глюкокортикоидов в среде, т.е. становятся стероид-индуцибельными генами. Постепенно укорачивая нуклеазной обработкой концы клонируемого фрагмента и вводя в него мутации, можно идентифицировать районы ДНК, которые непосредственно участвуют в связывании с гормон-рецепторным комплексом. Создается впечатление, что связывание гор-мон-рецепторного комплекса с определенным участком ДНК превращает его в активный энхансерный элемент. В ближайшем будущем мы, вероятно, сможем разобраться в молекулярном механизме точной регуляции экспрессии эукариотических генов, в частности на примере стероид-зависимых генов. [c.124]

    С учетом вышеперечисленных механизмов удалось получить мутантные миниплазмидные производные плазмиды R1 с нарушенным контролем числа копий. Такие миниплазмиды обладают температурочувствительными репликонами, которые при 30°С обеспечивают их существование в виде 20-50 копий на клетку, а при повышении температуры сверх пермиссивной и инкубации клеток на питательной среде в течение 2-3 ч количество плазмидной ДНК достигает 70% от суммарной клеточной ДНК [99]. Векторы, сконструированные на основе таких плазмид, способны обеспечивать очень высокий уровень экспрессии рекомбинантных белков, гены которых клонированы с их помощью. Повышение числа внутриклеточных копий плазмид в ряде случаев может быть достигнуто и другим распространенным способом. Как уже упоминалось, репликация многих плазмид, в том числе olEl, не требует синтеза белков, кодируемых их генами, тогда как контроль числа копий зависит от синтеза плазмидных макромолекул. Инкубация клеток, содержащих такие плазмиды, с [c.70]

    Как известно, экспрессия генов осуществляется путем их транскрипции и трансляции. Эффективность транскрипции за висит, прежде всего, от степени сродства РНК-полимеразы к iipo-мотору, а эффективность трансляции — от стабильности мРНК и ее способности связываться с рибосомами. Следовательно, системы транскрипции и трансляции реципиентных клеток долз.с-ны узнавать последовательности нуклеотидов в регуляторных сайтах клонируемых генов Это достигается путем присоединения чужеродного гена к промотору, сайту связывания рибосом и терминатору транскрипции, специфичным для тех клеток, в которых ген клонируется. Готовый набор этих элементов называют экспрессионной кассетой. Встраивание в кассету чужеродного гена приводит обычно к его экспрессии. [c.314]

    Полипептидные факторы транскрипции. Большое число факторов, предположительно участвующих в транскрипции ранней области SV40. было выделено из клеточных экстрактов, способных осуществлять транскрипцию с промотора ранней области. Для их идентификации, очистки и изучения применялись разные методы. Некоторые факторы специфически связываются с конкретным элементом, о чем свидетельствует их способность защищать определенные основания в этом элементе от расщепления ДНКазой 1 (футпринтинг разд. 8.2.в), а также уменьшение электрофоретической подвижности ДНК, содержащих такой элемент, при связывании его с белком (смещение полосы). Имеются данные о восстановлении транскрипционной активности в экстрактах, обедненных определенными факторами, при добавлении последних, а также об отсутствии такого восстановления в том случае, когда сайты связывания разрушены. Это указывает на то, что связывание данных факторов активирует транскрипцию. Клонированы и секвенированы гены, кодирующие некоторые факторы транскрипции. Их экспрессия в Е. соН и способность синтезированных продуктов активировать транскрипцию in vitro позволяют идентифицировать важные домены белков. [c.54]


Смотреть страницы где упоминается термин Клонированные гены, экспрессия: [c.397]    [c.204]    [c.27]    [c.348]    [c.44]    [c.169]    [c.251]    [c.397]    [c.215]    [c.215]    [c.139]    [c.392]    [c.339]    [c.245]    [c.339]    [c.122]    [c.199]    [c.199]    [c.134]    [c.183]    [c.236]    [c.333]    [c.343]    [c.353]    [c.447]    [c.45]   
Молекулярная биотехнология принципы и применение (2002) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Клонированные гены



© 2025 chem21.info Реклама на сайте