Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цитоскелет и мышечное сокращение

    Мышечное сокращение-результат работы весьма сложного и мощного белкового аппарата, который в зачаточной форме присутствует почти во всех эукариотических клетках. В процессе эволюции мышечных клеток элементы цитоскелета подверглись сильной гипертрофии и специализации, что сделало сократительный механизм мышц чрезвычайно стабильным и эффективным. В поперечнополосатой мускулатуре, к которой относятся скелетные и сердечная мышцы, а также сходные ткани беспозвоночных (например, летательные мышцы насекомых), структурная организация сократительного аппарата достигает такой степени, что можно непосредственно наблюдать его работу, и при этом сразу выявляется ряд важных свойств составляющих его молекул. [c.255]


    Чем больше клетка, чем сложнее и специализированнее ее внутренние структуры, тем больше необходимость контролировать положение и перемещение этих структур. Все эукариотические клетки имеют внутренний скелет цитоскелет, определяющий форму клеток, их способность двигаться и перемещать органеллы из одной части клетки в другую Цитоскелет образован сетью белковых волокон Наиболее важные среди них -это актиновые нити и микротрубочки (рис 1-25), которые, очевидно, возникли на очень ранних этапах эволюции, так как встречаются у всех эукариот практически в неизменном виде. И те, и другие участвуют в механизмах клеточных движений, например, актиновые нити (филаменты) обеспечивают мышечное сокращение, а микротрубочки являются основными структурными и силовыми элементами, обусловливающими движение ресничек и жгутиков - длинных выростов на поверхности некоторых клеток, биения которых напоминают удары бича. [c.34]

    Сократительная функция. В акте мышечного сокращения и расслабления участвует множество белковых веществ. Однако главную роль в этих жизненно важных процессах играют актин и миозин—специфические белки мышечной ткани. Сократительная функция присуща не только мышечным белкам, но и белкам цитоскелета, что обеспечивает тончайшие процессы жизнедеятельности клеток (расхождение хромосом в процессе митоза). [c.21]

    Многие белки, входящие в состав свойственного всем клеткам актинового цитоскелета, впервые были открыты в мышцах, и из всех типов движения, наблюдаемых у животных, мышечное сокращение для нас наиболее знакомо и лучше всего изучено. Бег, ходьба, плавание, полет -все эти виды локомоции у позвоночных основаны на способности скелетных мышц быстро сокращаться, приводя в движение соединенные [c.254]

    Цитоскелет 254 Мышечное сокращение 255 [c.534]

    В принципе такой же строго последовательный, ступенчатый переход в направлении от системы с более сложной структурной организацией к менее сложной присущ исследованиям любых биологических систем. Он неизбежен, поскольку живая природа организована таким образом, что каждая целостная биосистема (в нашем случае опорнодвигательная), расположенная в соответствии с конструкционным рангом (например, от цитоскелета до отдельных белков), представляет собой набор взаимодействующих между собой иерархически упорядоченных дискретных структур, каждая из которых является подсистемой по отношению к восходящей ветви ряда и системой по отношению к нисходящей ветви. Если это так и биосистемы действительно обладают субординационной организацией и построены по единой принципиальной схеме, подобной приведенной выше, то, несмотря на структурную и функциональную специфику каждой биологической системы, их изучение также должно строиться по единому принципиальному плану и иметь гносеологическую общность. Нет сомнения в том, что путь от отдельного органа до отдельных молекул через все соединяющие их ступени иерархической лестницы, который прошли и в значительной мере уже завершили при исследовании мышечных сокращений, должны пройти и при исследовании других биосистем. Поэтому представляет интерес проследить за ходом изучения актомиозинового комплекса с самой общей позиции, выделить особенности пройденного пути, не связанные с конкретными объектами исследования, оценить возможности созданной атомно-молекулярной модели, характер решаемых и не решаемых ею задач и, наконец, спрогнозировать ситуацию, возникающую после создания модели функционирования биосистемы. Иными словами, желательно получить ответы на вопросы, касающиеся, во-первых, общих для исследований всех биосистем особенностей и направленности поиска, во-вторых, возможностей и ограничений принципиального порядка, присущих [c.131]


    Гены актина и миозина. Биологическая функция мышц состоит в осуществлении механической работы путем сокращения. Проблема трансформации химической энергии в механическую была решена природой путем создания крайне длинных, многоядерных клеток, большая часть которых занята сократительными элементами-миофибриллами, расположенными параллельными пучками вдоль оси сокращения [120]. Механическая работа совершается благодаря взаимодействию двух видов белковых молекул-миозина и актина. Кроме мышечного сокращения актины участвуют во многих других клеточных функциях, таких, как поддержание структуры цитоскелета, движение клеток и митоз. [c.138]

    Помимо этих трех основных типов белковых филаментов цитоскелет включает также множество различных вспомогательных белков, которые либо связывают филаменты друг с другом или с другими клеточными структурами (например, с плазматической мембраной), либо влияют на скорость и степень полимеризации филаментов. Специфические комплексы вспомогательных белков, взаимодействуя с белковыми филаментами, обеспечивают процессы движения. Два наиболее изученных примера-мышечное сокращение, за которое ответственны актиновые филаменты, и подвижность ресничек и жгутиков, связанная с функцией микротрубочек. Хотя в этих видах движения участвуют разные наборы белков, в обоих случаях движение связано с гидролизом АТФ и основано на одном принципе-на скольжении белковых нитей относительно друг друга. [c.75]

    После мышечного сокращения наиболее изученным видом клеточной нодвижности является биение ресничек. Реснички - это миниатюрные волосовидные образования толщиной около 0.25 мкм. построенные из микротрубочек (микротрубочки - это вторая из грех главных груш нитевидных элементов цитоскелета). Реснички имеются у клеток многих типов и встречаются у большинства животных и некоторых низших растений. Их главная функция - создавать ток жидкости около поверхности клетки или продвигать клетку вперед сквозь толщу воды Простейшие, например, используют реснички и для передвижения, и для сбора пищевых частиц. У человека огромное множество ресничек (10 и более на 1 см ), принадлежащих клеткам эпителия нижних дыхательных путей, непрерывно перемещает слизь с частицами пыли и остатками отмерших клеток вверх, к ротовой полости, где слизь проглатывается и удаляется. Реснички обеспечивают гакже передвижение яйцеклетки по яйцеводу, а сходная с ними структура - жгутик -движет снерматозоггды позвоночньгх. [c.292]

    В течение последующих более чем двух десятилетий, вплоть до 1990-х годов, предложенное объяснение механизма мышечного сокращения, несмотря на продолжающееся все это время изучение цитоскелета, не претерпело значительного изменения и не смогло обрести доказательной силы. В чем же причины быстрого развития этой области в 1950-1960-е годы, отсутствие заметного прогресса в 1970-1980-е и всплеск достижений в первой половине 1990-х годов Приведенное выше краткое описание основных этапов развития исследований скелетных мышц как будто бы неоспоримо свидетельствует о наличии прямой связи темпа и глубины познания с достижениями в изучении морфологии, точнее, с временем прохождения исследований от внешней формы и строения биосистемы и далее через все уровни ее структурной организации, от вышестоящей, более сложной, к ближайшей нижестоящей, менее сложной. В 1950-1960-е годы имел место прогресс в изучении морфологии - разработаны модель скользящих нитей, молекулярная модель актомиозинового комплекса и схема молекулярного механизма относительного перемещения толстых и тонких филаментов. В 1970-1980-е годы отсутствовал прогресс в изучении морфологии, не было качественного развития представления о работе скелетных мышц. В начале 1990-х годов удалось закристаллизовать О-актин и глобулярную головку миозина и с помощью рентгеноструктурного анализа идентифицировать их атомные трехмерные структуры. Приблизительно в это же время была расшифрована дифракционная картина малоуглового рентгеновского рассеяния актомиозинового комплекса, а также получены его крио-электронные микрофотографии высокого разрешения. Последствиями морфологических достижений явились создание атомно-молекулярной модели мышечного сокращения, определение местоположения и геометрии АТР-связывающего активного центра и области миозина, периодически контактирующей с актином и обусловливающей относительное перемещение нитей, уточнение мест локализации на тонком филаменте тропомиозина и тропонинового комплекса и их роли в реализации и регуляции АТР-зависимого механизма мышечного сокращения. Сказанное выше о связи между знанием строения мышечной системы и пониманием механизма ее действия, т.е. между морфологией различных уровней структурной организации и физиологией мышцы, иллюстрирует схема, приведенная на рис. 1.37. Жирные стрелки указывают направление строго последовательного ступенчатого процесса познания структуры, а противоположно ориентированные тонкие стрелки - процесса познания функтщи биосистемы. [c.133]


    Способность эукариотических клеток сохранять определенную форму, а также осуществлять направленные и координированные движения обусловлена наличием у них цитоскелета - сложной сети белковых нитей, пронизывающих цитоплазму. Цитоскелет с равным правом можно назвать и цитомускулатурой - ведь именно он прямо ответствен за такие виды движения, как ползание клеток по субстрату, сокращение мышечных волокон и многообразные формообразовательные процессы у развивающихся зародышей позвоночных. Кроме гого, он обеспечивает активное перемещение клеточных органелл в цитоплазме. Поскольку у бактерий цитоскелета, по-видимому, нет, можно думать, что он играл важнейшую роль в эволюции эукариотических клеток. [c.254]

    Из шести вариантов актина, экспрессируемых у млекогаггающих один содержрггся только в скелетных мышцах, другой - в сердечной мышце, а еще два - только в гладкомышечных клетках (первый из них - в гладкой мускулатуре сосудов, а второй в мускулатуре других органов) и наконец, два последних варианта, известные как немышечные, или цитоплазматические, актины, являются, но-видимому, универсальными компонентами цитоскелета и в значительных количествах присутствуют в большинстве немышечных клеток. Все эти виды, или изоформы, актина очень сходны по аминокислотным последовательностям например, мышечные актины отличаются от цитоплазматических менее чем по 7% аминокислот. Если не считать некоторых различий в N-концевой части молекулы, возможно, влияющих на процесс полимеризации актина, не ясно, имеют ли такие различия какое-либо функциональное значение. Экспрессия гена сердечного актина в культивируемых фибробластах не изменяет ни форму, ни поведение клеток, и синтезируемый белок легко включается в их нормальные актиновые структуры. Напротив, различия между миозинами влияют и на скорость сокращения, и на его регуляцию, а также на стенень ассоциации молекул миозина в клетке. [c.272]


Смотреть страницы где упоминается термин Цитоскелет и мышечное сокращение: [c.121]    [c.292]    [c.55]    [c.151]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.193 , c.194 , c.195 , c.196 , c.197 ]




ПОИСК







© 2025 chem21.info Реклама на сайте