Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышца состоит из взаимодействующих

    Гены актина и миозина. Биологическая функция мышц состоит в осуществлении механической работы путем сокращения. Проблема трансформации химической энергии в механическую была решена природой путем создания крайне длинных, многоядерных клеток, большая часть которых занята сократительными элементами-миофибриллами, расположенными параллельными пучками вдоль оси сокращения [120]. Механическая работа совершается благодаря взаимодействию двух видов белковых молекул-миозина и актина. Кроме мышечного сокращения актины участвуют во многих других клеточных функциях, таких, как поддержание структуры цитоскелета, движение клеток и митоз. [c.138]


    В начале этого века. Современные исследования привели к представлению об этих рефлексах как о сервосистеме для стабилизации головы в пространстве. Шейные рефлексы работают как замкнутая система с отрицательной обратной связью поскольку мышцы шеи прикреплены к голове, их реакции на стимуляцию лабиринта стремятся вернуть голову в нормальное положение и уменьшить стимуляцию. Эти рефлексы, как правило, являются обязательными и неосознаваемыми, что согласуется с прямыми синаптическими путями, показанными на рис. 15.13. Напротив, мышцы туловища и конечностей состоят в изменчивых отношениях с положением головы благодаря связи через шею. Возможно, именно поэтому в вестибулярной системе имеются как возбуждающие, так и тормозные волокна и синаптическая передача осуществляется как через возбуждающие, так и через тормозные интернейроны (рис. 15.13). Взаимодействие влияний лабиринтных и шейных рефлексов на конечности представлено на рис. 15.14. [c.386]

    По видимому, дальнейшее совершенствование такого одноклеточного организма может идти по пути все большей диффе-ренцированности рецепторов, все более рационального их расположения, группировки, взаимодействия, все более совершенной связи с ундулоподиями. Однако никакого существенного увеличения в скорости перемещения к цели этим уже не достичь. Она лимитируется предельной, невысокой скоростью движения организмов посредством ресничек. Управление же движением, совершаемым посредством мышц, требует решения совсем других задач. Как мы уже показали выше, движение при помощи мышц состоит в изменении формы клетки в целом, и поэтому направленное перемещение организма может быть осуществлено лишь в многоклеточном организме. В конце предыдущей главы уже отмечалось, что само возникновение многоклеточных орга- [c.201]

    Мономер актина представляет собой глобулярный белок (Мг=42 000), который полимеризуется в виде двойной спирали, образуя 1-нить. Эта нить содержит еще два белка — тропомиозин и тропонин (рис. 4.2, В). Тропонин состоит из трех субъединиц ТЫ-Т, ТЫ-1 и ТЫ-С. Тропомиозин и ТЫ-1 — это компоненты, которые в покоящейся мышце препятствуют взаимодействию актина и миозина и, следовательно, активации миози-новой АТРазы. В покоящейся мышце в результате активного транспорта практически все ионы кальция удерживаются в окружающей миофибриллы мембранной структуре, называемой саркоплазматическим ре-тикуломом. После стимуляции нерва, подходящего к [c.64]

    Мышца состоит из взаимодействующих друг с другом толстых и тонких белЕовык нитей [c.260]

    На следующей стадии (стадия г) пептидная цепь переносится к. аминогруппе аминоацил-тРНК, занимающей А-участок, путем простой реакции замещения. Однако на. деле эта реакция протекает сложнее, чем это показано на рисунке. Она сопровождается расщеплением связанного GTP и освобождением Pi и комплекса Ти—GTP. Последний, как показано на рисунке, взаимодействует с Ts при этом вновь образуется димер Tu-Ts и освобождается GDP. Таким образом, суммарная реакция состоит в расщеплении GTP, сопряженном с синтезом пептидной связи. Химия реакции не требует гидролиза GTP. Мы, однако, ле знаем, насколько близко друг к другу располагаются концы двух соседних молекул тРНК. Расстояние между ними может быть достаточно большим. Белки L7 и L12 содержат необычайно много аланина и характеризуются высоким относительным содержанием а-спи-ральных участков. В этом отношении они напоминают мышечный белок миозин. В связи с этим было высказано предположение, что эти белки служат частью мини-мышцы , которая, используя энергию, освобождающуюся при гидролизе GTP, перемещает определенные участки рнбосомного комплекса, сближая между собой аминогруппу и пептидильную группу в пептидилтрансферазной реакции. [c.235]


    РИС. 4-23. А. Схема молекулы миозина. На расстоянии 90 нм от С-конца расположен участок, по которому расщепляется молекула при кратковременной обработке трипсином. В результате расщепления образуются два фрагмента—легкий и тяжелый меромиозииы (ЛММ и ТММ). Общая длина молекулы миозина 160 нм, мол. вес 470 000 молекула состоит из двух тяжелых цепей (мол. вес 200 ООО) и двух пар легких цепей головок (мол. вес 16 000—21 000), размером 15X4X3 им. Б. Предложенная Сквайром [87] схема строения толстых нитей скелетной мышцы позвоночных. Показана лишенная головок (оголенная) область вблизи М-линии. Темными кружками обозначены головки на концах миозиновых молекул (палочек), а темными треугольниками — противоположные концы миозиновых палочек. Взаимодействие между антипараллельно расположенными молекулами на протяжении 43 н 130 нм отмечено соответственно одинарной и тройной поперечными линиями. Встречными стрелочками (треугольниками) обозначены места соединения миозиновых молекул (палочек) хвост к хвосту . Молекулы простираются от середины структуры, где расположены их С-концы, к поверхности нитей, где находятся их головки. На уровнях, обозначенных буквой В, к миозиновой нити присоединяется М-мо тик. Уровень Щ—Щ — зпо Центр М-лннци и всей нити. [c.322]

    Сокращение основано на превращении химической энергии в ме-7 зническую. Если мышца активирована, расход ее химической энергии в форме АТР увеличивается на один-два порядка. Один из предложенных механизмов состоит в следующем. В расслабленном состоянии мышцы актин и миозин не взаимодействуют и головка миозина характеризуется слабой АТРазной активностью, которая лимитируется стадией освобождения продуктов, главным образом Mg-ADP. В работающей мышце актин усиливает АТРазную активность миозина примерно в 100 раз путем вытеснения Mg-ADP. До снх пор не ясно, является ли действие актина на ADP-связываю-щий центр миозина прямым или зллостерическим. [c.287]

    Хотя гемоглобин при высоком давлении кислорода почти так же хорошо связывает его, как и миоглобин, при низких давлениях он связывает Ог значительно хуже миоглобина и поэтому передает его миоглобину в мышцах, как это и нужно. Более того, потребность в кислороде будет наибольшей в тканях, которые уже использовали кислород и одновременно выработали СОа. Диоксид углерода понижает pH, а это еще больше увеличивает способность гемоглобина передавать кислород миоглобину. Влияние рЙ, так называемый эффект Бора, а также прогрессивное увеличение констант связывания кислоро да в гемоглобине обусловлены специфическими взаимодействиями между субъединицами. Миоглобин ведет себя проще, поскольку оц состоит только из одной субъединицы. Очевидно, что оба эти вещества необходимы для осуществления процесса транспорта. кислорода. Оксид углерода, РРз и некоторые, другие вещества токсичны, потому что они свя-зыва-ются с атомами железа гемоглобина прочнее, чем Ог. Они действуют как дон курентные ингибиторы. [c.642]

    Основной нуть катаболизма глюкозы в большинстве клеток состоит из ряда реакций, в результате которых глюкоза нревраш ается в пируват Hg O O ". Этот путь используется в таких различных процессах, как образование АТФ, обеспечиваюгцее энергией сокраш ение скелетных мышц в анаэробных условиях синтез АТФ для удовлетворения постоянной острой потребности в энергии сердечной мышцы, работаюш ей в строго аэробных условиях (при которых происходит полное сгорание глюкозы) многие виды брожения, вызываемого микроорганизмами, — сбраживание глюкозы до этанола, молочной кислоты, глицерина, гликолей и ряда других продуктов, что обеспечивает эти организмы всеми промежуточными продуктами и почти всей энергией, необходимой для их роста. Нетрудно понять, почему именно этот путь был первым полностью описан на уровне взаимодействия гомогенных ферментов, их субстратов и кофакторов. [c.278]

    Регуляция скорости синтеза белков. Такое действие оказывают стероидные и тиреоидные гормоны они проникают в клетку и взаимодействуют со специфическими рецепторами. Гормонрецепторный комплекс проникает в ядро, связывается с хроматином и увеличивает скорость синтеза белков на уровне генов (рис. 51). Активные гены усиливают синтез определенной РНК, которая выходит из ядра, поступает к рибосомам и запускает синтез новых белков, которые могут быть структурными или сократительными белками мышц и других тканей, а также ферментами или гормонами. В этом состоит их анаболическое действие. Однако скорость белкового синтеза в клетках — относительно медленный процесс, так как требует большого количества энергии и пластического материала. Поэтому такие гормоны не могут осуществлять быстрый контроль процессов метаболизма. Основная их функция сводится к регуляции процессов роста, развития и дифференцировки клеток организма. [c.138]

    Миозин является одним из основных сократительных белков мышц, составляющий около 55 % общего количества мышечных белков. Из него состоят толстые нити (филаменты) миофибрилл. Молекулярная масса этого белка — около 470 ООО. В молекуле миозина различают длинную фибриллярную часть и глобулярные структуры (головки). Фибриллярная часть молекулы миозина имеет двуспиральную структуру (рис. 117). В составе молекулы выделяют шесть субъединиц две тяжелые полипептидные цепи (молекулярная масса 200 ООО) и четыре легкие цепи (молекулярная масса 1500—2700), расположенные в глобулярной части. Основной функцией фибриллярной части молекулы миозина является способность образовывать хорошо упорядоченные пучки миозиновых филаментов или толстые протофибриллы (см. рис. 117). На головках молекулы миозина расположены активный центр АТФ-азы и актинсвязывающий центр, поэтому они обеспечивают гидролиз АТФ и взаимодействие с актиновыми филаментами. [c.296]


    Структура миозиновых нитей. Миозин (сокращенно Му) составляет почти половину (55 %) всех белков скелетной мышцы. В настоящее время известно около 10 различных видов молекул миозина. Рассмотрим строение наиболее изученного миозина скелетных мышц. Миозин состоит из шести субъединиц, две из которых представлены одинаковыми полипептидными цепями с высокой молекулярной массой (около 200 ООО) — тяжелые цепи миозина, а остальные четыре имеют молекулярную массу около 20 ООО — легкие цепи миозина. Большая часть длины тяжелой цепи, начиная с С-конца, имеет конфигурацию а-спирали, причем а-спираль-ные участки обеих тяжелых цепей взаимодействуют между собой, что приводит к дополнительной спирализации и придает этой части молекулы миозина форму палочки (рис. 17.3). Противоположные К-концы каждой тяжелой цепи миозина имеют глобулярную форму, образуя головки молекулы. С каждой из головок за счет нековалентных межмолекуля -ных взаимодействий связаны по две легкие цепи. Обе легкие цепи миозина способны влиять на процесс взаимодействия миозина с актином и тем самым участвуют в регуляции мышечного сокращения. [c.477]

    Много лет назад Н. К. Кольцов обнаружил, что форма клеток определяется формой каркаса, состоящего, как он считал, из коллагеновых волокон 144]. В последние годы весьма интенсивно развиваются исследования фибриллярных структур, определяющих форму клеток. Эти структуры состоят из так называемых микрофиламентов. Основная компонента микрофиламентов — актин, т. е. один из двух главных белков мышц [392, 393]. Микрофиламеиты расположены непосредственно под мембраной клетки. Однако, насколько мне известно, вопрос об их взаимодействии с мембраной не изучен. Неясно также, следует ли исключить предположение о коллагеновом каркасе. Возможность участия коллагена в таком каркасе следует из опытов по созданию на нем искусственных возбудимых липопротеидных мембран [369]. [c.90]

    Актиновая нить состоит из двух закрученных один вокруг другого мономеров актина толщиной по 5 нм (рис. 7.2). Эта структура похожа на две нитки бус, скрученные по 14 бусин в витке. В цепях актина регулярно примерно через 40 нм встроены молекулы тропонина, а сама цепь охватывает нить тропомиозина. При сокращении мышцы тонкие нити вдвигаются между толстыми. Происходит относительное скольжение нитей без изменения их длины. Этот процесс обусловлен взаимодействием особых выступов миозина - поперечных мостиков с активными центрами, расположенными на актине. Мостики отходят от толстой нити периодично на расстоянии 14,5 нм друг от друга. [c.145]

    К актомиозинподобным белкам ЦНС относится нейросте-нин. Он состоит из двух белков — не ина и стенина. Взаимодействуя между собой, они образуют комплекс — нейростенин с = 47-50 кД. Он имеет много общего с актомиозином мышцы по структуре и по функциям, хотя и не идентичен ему. [c.83]

    В процессе развития глаза между клетками и тканями возникают сложные взаимодействия (индукционные и тормозящие), характерные для морфогенетического поля. Как уже говорилось в гл. 10, в развивающемся переднем мозге появляются два боковых выпячивания — глазных пузыря. Глазные пузыри дорастают до эктодермы. В зоне контакта с эктодермой глазной пузырь индуцирует в ней образование линзы (рис. 11-3, 5). Эктодерма утолщается, погружается внутрь и отшнуровывается, образуя зачаток липзы. Клетки наружной поверхности линзы (обращенные к эктодерме) остаются плоскими и образую,т линзовый эпителий. Клетки внутренней поверхности (обращенные к глазному пузырю) значительно утолщаются и начинают синтезировать специфические линзовые белки, которые кристаллизуются в линзовые волокна. Меридиональное расположение волокон приводит к образованию двояковыпуклой липзы. Находящаяся над линзой роговица состоит из клеток двух типов. Наружный ее слой образуют эпителиальные клетки, внутренний — рыхлые мезенхимные. В радужине развиваются пигментные клетки и мышцы, контролирующие размер зрачкового отверстия. Между тем после контакта с эктодермой полость глазного пузыря уменьшается, его стенка впячивается, и в конце концов он принимает вид чаши рис. 11-3, В, Г). В толстом внутреннем слое образуются фоторецепторы и нервные клетки (сетчатка). Тонкий наружный слой превращается в пигментный эпителий. Волокна нервных клеток через глазной стебелек попадают в мозг. Опыты, поставленные па зародышах амфибий, позволили установить следующие факты. [c.191]

    Обмен глюкозо-6-фосфата. Епокозо-6-фосфат образуется в организме разными путями. Во-первых, он может синтезироваться путем фосфорилирования глюкозы за счет ее взаимодействия с АТФ. Во-вторых, он образуется в результате реакции изомеризации фосфорных эфиров других изомерных ему гексозофосфорных эфиров. В-третьих, он получается из глюкозо-1-фосфата, который представляет собой продукт фосфоролиза олиго-и полисахаридов. Две первые реакции рассмотрены в предьщущем разделе. Что касается преобразования глюкозо-1-фосфата в глюкозо-6-фосфат, то эта реакция протекает в два этапа при участии фермента фосфоглюкомутазы. Молекулярная масса фермента из мышц кролика равна 62000 молекула фосфоглюкомутазы состоит из двух субъединиц с М = 31 ООО каждая. Активный центр ее включает в свой состав остаток фосфосерина, с которого [c.339]

    Пособие состоит из трех частей. В первой части представлены данные о микро- и ультраструкгуре соматической, сердечной и гладкой мускулатуры, гистогенезе, регенфации и морфологических изменениях этих тканей в условиях патологии. Приводятся сведения по сравнительной гистологии и эволюции мышечных тканей. Вторая часть содержит данные по физиологии мышечного сокращения. Рассматриваются особенности и механизмы функционирования мышечных тканей в условиях нормы и патологии. В третьей части приведены основы биохимии мышечных тканей. Представлены современные данные о структуре мышечных белков, их свойствах, взаимодействиях расшифровка биохимических основ сокращения разных типов мышц. [c.2]

    Вероятно, наиболее подробно изучен так называемые миозин II — основной сократительный белок поперечнополосатых, сердечных и гладких мышц. Миозин II (в дальнейшем для простоты — миозин) представляет собой гетерогексамер и состоит из двух тяжелых цепей (мол. масса 200 000—220 ООО), двух регуляторных легких (мол. масса 17 000—21 ООО) и двух так называемых щелочных (или существенных) легких (мол. масса 16 000—22 ООО) цепей. Эти шесть полипептвдных цепей удерживаются между собой за счет нековалентных взаимодействий и образуют прочный комплекс, который называется мономерным миозином. Тяжелые цепи миозина имеют асимметричную форму, при этом К-концевая часть формирует глобулярную головку, в которой располагаются АТРазный и актинсвязываю-щий центры, а С-концевая часть сворачивается в длинную асимметричную а-спираль. Легкие цепи миозина располагаются в области шейки , т.е. на переходе от головки к стержневому хвосту, и играют в основном регулято шую и структурную роль, стабилизируя правильную упаковку определенных частей молекулы миозина (рис. 94). [c.178]

    Поперечнополосатая мышца позвоночных состоит из белковых нитей двух типов, которые взаимодействуют друг с другом. Толстые нити содержат миозин, а тонкие-актин, тропомиозин и тропонин. Гидролиз АТР актомиозином вызывает скольжение указанных нитей относительно друг друга. Миозин представляет собой очень большой по массе белок (500 ьДа), состоя-гций из двух основных цепей и четырех легких цепей. Конформация основных цепей такова, что опи содержат две глобулярные области (головки 81) и присоединенный к ним длинный а-спирализованный стержень. Головки 81 и часть стержня образуют поперечные мостики, которые взаимодействуют с актином, генерируя силу сокращения. Остальная часть молекулы миозина создает скелет толстой нити. Актин - основной компонент тонких нитей - представляет собой глобулярный белок (42 ьДа), который полимеризуется с образованием нитей диаметром 70 А. Толстые и тонкие нити определенным образом направлены, причем посе- [c.279]


Смотреть страницы где упоминается термин Мышца состоит из взаимодействующих: [c.112]    [c.366]    [c.187]   
Биохимия Т.3 Изд.2 (1985) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Мышца

Мышца состоит из взаимодействующих друг с другом толстых и тонких белковых

Мышца состоит из взаимодействующих друг с другом толстых и тонких белковых нитей

Мышца состоит из взаимодействующих нитей



© 2025 chem21.info Реклама на сайте