Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки и их главные биологические функции

    Строение и свойства других важнейших биополимеров — нуклеиновых кислот—существенно отличны от строения и свойств белков. Это различие выражает принципиальную разницу биологических функций. Можно сказать, что функция белков— исполнительная, в то время как функция нуклеиновых кислот— законодательная, поскольку она сводится к участию в синтезе белка. В конечном счете главный молекулярный процесс, лежащий в основе всей биологии, — матричный синтез биополимеров, реализуемый в транскрипции и трансляции (а также в обратной транскрипции). Физические основы этих явлений описаны в книге. Однако мы ограничились рассмотрением простейших модельных процессов, реализуемых в бесклеточных системах, и не затрагивали процессы регуляции матричного синтеза, т. е. регуляции действия генов. Очевидно, что клеточная дифференцировка, морфогенез и онтогенез в целом не могли бы реализоваться без такой регуляции. В самом деле, в любой соматической клетке многоклеточного организма наличествует тот же геном, что и в исходной зиготе, но функции соматических клеток различны, так как в них синтезируются разные белки. Регуляция действия генов осуществляется на молекулярном уровне в системе оперона у прокариотов или транскриптона у эукариотов. Рассмотрение этих систем выходит за рамки книги. [c.610]


    Глобулярные белки (от латинского слова 1оЬи1а — шарик) состоят из макромолекул шаровидной, эллипсовидной, реже веретенообразной формы. Характерной особенностью этих белков является хорошая растворимость в воде, т. е. высокая гидрофильность. Глобулярные белки находятся главным образом в биологических жидкостях в крови, лимфе, протоплазме клеток. Белки этой группы — альбумины, а также глобулины яичного белка, молока, сыворотки крови, пепсин желудочного сока и другие — выполняют в организме очень важные биологические функции. [c.338]

    БЕЛКИ И ИХ ГЛАВНЫЕ БИОЛОГИЧЕСКИЕ ФУНКЦИИ [c.30]

    Осмотическое давление в жидкостях организма (кровь, лимфа, межклеточная жидкость, спинномозговая жидкость и др.) выполняет важную физиологическую функцию, влияющую на распределение в тканях организма воды, солей и различных питательных веществ. Осмотическое давление указанных биологических жидкостей зависит главным образом от растворенных в них низкомолекулярных минеральных веществ, преимущественно хлористого натрия, но также от высокомолекулярных соединений, находящихся в коллоидном состоянии, главным образом белков. [c.227]

    Белки выполняют множество самых разнообразных функций, характерных для живых организмов, с некоторыми из которых мы познакомимся более подробно при дальнейшем изучении курса. Ниже рассматриваются главные и в некотором смысле уникальные биологические функции белков, несвойственные или лишь частично присущие другим классам биополимеров. [c.20]

    Гепарин, открытый в 50-х гг. XX в., занимает среди гетерополисахаридов особое место. Было показано, что он обладает важными биологическими свойствами, в частности является антикоагулянтом. Однако биологические функции этого вещества до конца не изучены. Гепарин встречается главным образом в крови и лимфе млекопитающих, а также в органах, в которых содержатся тучные клетки, являющиеся, по-видимому, местом синтеза и хранения гепарина. Обычно гепарин прочно связан с белком, и для вьщеления его из природных источников приходится применять довольно жесткие методы. [c.237]

    С признанием по крайней мере некоторых биологических функций рибонуклеиновых кислот возникло представление о том, что порядок расположения различных нуклеотидных звеньев имеет особое значение, как и в случае белков и полипептидов. Экспериментальное определение этой последовательности представляет собой главную проблему сегодняшнего дня пока же наибольший фрагмент из природной рибонуклеиновой кислоты, структура которого установлена с определенностью, имеет длину меньше десяти нуклеотидов . Вследствие относительно небольшого числа разновидностей мономеров, участвующих в образовании молекулы нуклеиновой кислоты, методы, включающие частичную деградацию рибонуклеиновых кислот до малых полинуклеотидов с последующим разделением, анализом последовательности и реконструкцией исходной цепи посредством специфического наложения, подвержены довольно строгим ограничениям. Присутствие в нуклеиновой кислоте небольших количеств минорных нуклеотидов и щелочеустойчивых межнуклеотидных связей должно до некоторой степени содействовать этому при таком подходе. Ступенчатая деградация самой рибонуклеиновой кислоты, может быть, и осуществима, если говорить о нуклеиновой кислоте, содержащей 50—100 нуклеотидов но анализ последовательности немногих известных гомогенных препаратов [c.386]


    До сих пор речь щла у нас главным бразом о центральных метаболических путях, т.е. о путях превращения основных пищевых веществ клетки-углеводов, жиров и белков. На этих центральных путях потоки -мeтaJбoлитoв довольно внущи-тельны. Например, в организме взрослого человека ежесуточно окисляется до СО2 и воды несколько сотен граммов глюкозы. Есть, однако, и другие метаболические пути со значительно меньшим потоком метаболитов ежесуточный синтез или распад измеряется здесь миллиграммами. Эти пути составляют так называемый вторичный метаболизм, роль которого состоит в образовании различных специализированных веществ, требующихся клеткам в малых количествах. К вторичным метаболическим путям принадлежит, например, биосинтез коферментов и гормонов, потому что эти соединения вырабатываются и используются только в следовых количествах. Сотни различных высокоспециализированных биомолекул, в том числе нуклеотиды, пигменты, токсины, антибиотики и алкалоиды, продуцируются у разных форм жизни на вторичных метаболических путях. Все эти продукты, разумеется, очень важны для тех организмов, которые их вырабатывают, и все они выполняют какие-то определенные биологические функции. Однако специализированные вторичные метаболические пути, ведупще к их синтезу, не во всех случаях хорошо изучены. В этой книге мы лишены возможности рассматривать эти вторичные метаболические пути, порой весьма сложные мы здесь займемся главным образом центральными, или первичными, путями метаболизма. [c.391]

    Белки являются одной из трех главных органических составных частей живой материи (две другие — жиры и углеводы), однако по своему значению и по разнообразию своих биологических функций они стоят совершенно обособленно. Белки составляют почти половину сухого вещества организма (около 70% веса нашего тела приходится на долю воды). Из общего количества белка в организме более одной трети находится в мышцах. Белок миозин образует волокна, которые являются основным сократительным элементом, обеспечивающим [c.64]

    РНК находится в других частях клетки и несет совсем другие биологические функции. Она находится главным образом в цитоплазме и связана, по-видимому, с синтезом белка. Синтез белка, конечно, является одной из главных проблем биологии, так как белки составляют основную часть живой материи, так как в виде ферментов они управляют почти всеми динамическими процес- [c.114]

    Синтез и структура макромолекул ДНК, РНК и белка являются главной проблемой исследований молекулярной биологии. Молекулярная биология, как раздел биологической науки, изучает свойства и структурные особенности химических соединений, главным образом макромолекул, в связи с их биологическими функциями, а также природу физических и химических процессов, механизм химических реакций, лежащих в- основе [c.303]

    Традиционно глава 1 посвящена строению, свойствам и биологическим функциям самых главных веществ живых организмов — белков и составляющих их аминокислот. [c.34]

    Было высказано предположение, что экзоны кодируют определенные автономные элементы укладки полипептидной. цепи, представляющие собой функциональные сегменты белковой молекулы, которые сортируются в процессе эволюции. Если процессы такой перетасовки генетического материала, механизмы которых не рассматриваются, идут по районам интронов, то структура экзонов не изменяется и, следовательно, не нарушаются функциональные свойства отдельных белковых доменов. Экзоны могут соответствовать участкам доменов или отдельным белковым доменам, т. е. тем участкам белковой молекулы, которые можно выделить как пространственно делимые структуры, обладающие определенной биологической функцией. Установление раз.меров экзонов во многих генах показало, что главный класс экзонов имеет раз.меры около 140 п. и., что соответствует 40—50 а. о. в молекуле белка. Большая часть белковых доменов, содержащих в среднем 100—130 а. о., складывается из нескольких элементов вторичной структуры ( су-первторичных структурных единиц), кодируемых отдельными экзонами. М-терминальный участок из нескольких гидрофобных аминокислот (сигнальный пептид) секреторных белков, как правило, также кодируется отдельным экзоном. [c.192]

    Обмен белков и аминокислот играет важнейшую и незаменимую роль в жизни организмов. Изучение обмена белков позволяет детально понять глубокий смысл, заложенный в биологическом постулате, гласящем, что организмы делаются белками . В этом постулате заключена та чрезвычайная биологическая значимость, которая присуща исключительно белковым соединениям (биологические функции белков рассматриваются в главе 1). Кроме того, для животных и человека аминокислоты — строительные блоки белковых молекул — являются главными источниками органического азота, который используется в первую очередь для синтеза специфических для организма белков и пептидов (рис. 12.1), а из них — азотсодержащих веществ небелковой природы (пуриновые и пиримидиновые основания, порфирины, гормоны и др.). При необходимости аминокислоты могут служить источником энергии для организма главным образом за счет окисления их углеродного скелета. [c.360]


    Питательная (резервная) функция. Эту функцию выполняют так называемые резервные белки, являющиеся источниками питания для плода, например белки яйца (овальбумины). Основной белок молока (казеин) также выполняет главным образом питательную функцию. Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма. [c.21]

    Кроме функции одного из трех важнейших продуктов питания (два другие - углеводы и белки) жиры в организме выполняют несколько биологических задач, из которых главная-запас энергии. Жиры также играют первостепенную роль в формировании клеточных мембран. Около 1/3 жиров, вырабатываемых во всем мире, применяют для технических целей, например в производстве мыла. [c.315]

    Как известно, все главнейшие свойства и функции организма зависят от свойств и функций важнейших ло своей значимости в природе биологических полимеров — белков и нуклеиновых кислот ( НК). [c.7]

    Но дело не только в том вкладе, который внесла и вносит химия в разгадку тайн живого. Главное заключается в том, что объективно в самой основе биологических процессов, функций живого лежат химические механизмы. Касается ли это такого важнейшего момента, как передача биологической информации, или воспроизведение живого организма посредством матричного синтеза, или, наконец, деятельность белков — ферментов, воздействующих на множество протекающих в организмах жизненно важных функций и процессов, — все это оказывается возможным изложить на химическом языке, описать в формах молекулярных взаимодействий, т. е. в виде конкретных химических процессов. [c.94]

    В настоящей книге подробно не описываются отдельные типы белковых веществ, основное внимание здесь уделено ферментным белкам. О двух главных группах — растворимых (очень часто простых) и сложных белках — упоминается очень коротко. По своим свойствам и функциям растворимые белки очень разнообразны, иногда это просто питательные вещества для растущих тканей. Значительная часть этих белков наделена специфической биологической активностью — ферменты, антитела, гормоны и др. Важнейшие группы белков, относящиеся к растворимым,— это белки сыворотки крови, белки молока, яиц, растительные протеины, а также протамины и гистоны. [c.37]

    Здесь мы кратко обсудим данные и некоторые представления главным образом о роли белков нервной ткани в ее специфических функциях и очень мало будем касаться роли других биологически важных соединений. При современном уровне наших знаний в этой области предпринимаемая попытка является несомненно сложной. Полное раскрытие роли специфических белков нервной ткани в особых, присущих ей одной функциях пока невозможно в силу ограниченности сведений по данному вопросу. Однако важность проблемы побуждает нас идти на риск весьма схематического изложения накопленного в этой области экспериментального материала, незначительного по объему, часто весьма фрагментарного и пока не поддающегося обширному обобщению. В связи с этим речь ниже пойдет скорее об участии белков в некоторых специфических функциях нервной системы, чем о конкретной роли в этих функциях определенных специфических белков. [c.20]

    Книга 111ульца и Ширмера Принципы структурной организации белков — первая в мировой литературе монография, в которой рассматриваются общие вопросы пространственного строения белков и на этой основе их биологические функции. Основное достоинство книги — широкий охват рассматриваемых вопросов, причем главное внимание направлено на механизм свертывания полипептидной цепи в нативную конформацию белка и на структурно-функциональную зависимость. Обсуждение различных аспектов структурной проблемы белка проведено на высоком профессиональном уровне. [c.6]

    Классическая биохимия изучала главным образом жизненно важные процессы в организмах растений и животных с участием органических соединений — белков, углеводов, жиров, нуклеиновых кислот, витаминов, гормонов и др. Она практически не касалась вопросов о воздействии на эти молекулы (и на их биологические функции) многообразных неорганических соединений, поступающих в организм с питательными веществами или другим путем. Сегодня стало очевидным, что в живых организмах присутствуют соединения всех элементов периодической системы, которые в ничтожных, некоторые — минигомеопатических количествах, изначально присутствовали в живых организмах с момента зарождения жизни на Земле, так как попадали тем или иным путем в водоемы, воздух и на луга, а оттуда в организмы животных и растений. В настоящее время, когда техническая деятельность человека и разрущение земных покровов приняло порой неразумные и даже катастрофические размеры, в окружающую среду попадают уже не гомеопатические, а макрогомеопатические количества соединений всех элементов периодической системы, которые, безусловно, оказывают сильнейшее воздействие на жизнь. Поскольку остановить все более стремительное развитие техники и разрушение данной от природы структуры Земли, водных покровов и воздушного океана невозможно в силу того, что это есть следствие развития естественных потребностей человека, крайне необходимо изучать и знать, как состав окружающей среды взаимодействует с биологическими структурами человека, животных и растений и какие непредсказуемые последствия может вызвать. [c.182]

    Таким образом, из этого далеко не полного перечня основных функций белков видно, что указанным биополимерам принадлежит исключительная и разносторонняя роль в живом организме. Если попытаться вьщелить главное, решающее свойство, которое обеспечивает многогранность биологических функций белков, то следовало бы назвать способность белков строго избирательно, специфически соединяться с широким кругом разнообразных веществ. В частности, эта высокая специфичность белков (сродство) обеспечивает взаимодействие ферментов с субстратами, антител с антигенами, транспортных белков крови с переносимыми молекулами других веществ и т.д. Это взаимодействие основано на принципе биоспе-цифического узнавания, завершающегося связыванием фермента с соответствующей молекулой субстрата, что содействует протеканию химической реакции. Высокой специфичностью действия наделены также белки, которые участвуют в таких процессах, как дифференцировка и деление клеток, развитие живых организмов, определяя их биологическую индивидуальность. [c.22]

    Белки, или протеины,— важнейший класс биологически активных веществ. Они играют ключевую роль в клетке, присутствуют в виде главных компонентов в любых формах живой материи, будь то микроорганизмы, животные или растения. Без белков невозможно предстааить себе жизнедеятельность, жизнь и именно в этом смысле и сеголня сохраняет свое значение определение Ф. Энгельса Жизиь есть способ существования белковых тел . Белки чрезвычайно разнообразны по структуре и выполняют многочисленные биологические функции (схема I). [c.20]

    Знание первичной структуры нук.пеиновых кислот необходимо для выяснения связи между нх строением и биологической функцией и в конечном итоге — для понимания механизма их биологического действия. При этом приобретают прочную основу выводы эволюционного и таксономического (систематического) плана. Однако в последние годы расшифровка нуклеотидной последовательности генетических структур стала и главным путем выяснения первичной структуры соответствующих белков, обеспечив очень быстрый прогресс в этой области. [c.308]

    У высших организмов процессы биосинтеза белка регулируются значительно сложнее. Хотя каждая клетка позвоночного содержит полный геном данного организма, в клетке данного типа экспрессируется только часть структурных генов. Почти во всех клетках высших животньк присутствуют наборы основных ферментов, необходимые для реализации главных путей метаболизма. Однако клетки разных типов, например клетки мышц, мозга, печени, содержат свойственные только им структуры и выполняют только им присущие биологические функции, реализация которых обеспечивается наборами специализированных белков. Например, клетки скелетных мьшщ содержат огромное количество ориентированных миозиновых и актиновых нитей (разд. 14.14), тогда как в печени миозина и актина очень мало. Точно так же клетки мозга содержат ферменты, необходимые для синтеза большого числа различных веществ-медиаторов нервных импульсов, в то время как клетки печени этих ферментов вообще не содержат, Вместе с тем в печени млекопитающих присутствуют все ферменты, необходимые для образования мочевины, тогда как в других тканях этих ферментов нет и они не обладают способностью синтезировать мочевину (разд. 19.15). Кроме того, биосинтез разных наборов специализированных белков должен быть точно запрограммирован в последовательности и времени их появления в ходе строго упорядоченной дифференцировки и роста высших организмов. Пока нам сравнительно мало что известно о регуляции экспрессии генов в эукариотических организмах с их многочисленными хромосомами. Однако сегодня мы располагаем значительной информацией о регуляции синтеза белка у прокариот. К ней мы сейчас и перейдем. [c.954]

    Характеристическая красная и желтая окраски комплексов железа и меди с сидерофилинами не развиваются в отсутствие бикарбоната. Отсюда следует, что этот ион играет главную роль в комплексообразовании металлов с белками [5]. Прямое измерение количества двуокиси углерода, выделяющейся при кислотной денатурации комплексов с железом [42], медью [69], хромом, марганцем и кобальтом [45], подтвердило сделанное ранее предположение Шэйда [5] о том, что на каждый связанный ион металла связывается один бикарбонатный ион. Связывание бикарбоната не является обязательным, и это было продемонстрировано серией исследований связывания металла с трансферрином методом спектроскопии электронного парамагнитного резонанса, которые показали, что специфическое связывание, по крайней мере железа и меди, может происходить и в отсутствие бикарбоната [70]. Образующиеся при этом комплексы были бесцветны и поэтому недетектируемы до появления метода ЭПР. Очевидно, в отсутствие бикарбоната связь железо — белок гораздо слабее, чем в его присутствии, так как при стоянии не содержащего бикарбоната комплекса железа с трансферрином при нейтральных или более высоких значениях pH наблюдается гидролиз железа с образованием нерастворимого гидроксида железа(III). Возможная физиологическая роль этого эффекта будет обсуждена в разделе, посвященном биологическим функциям сидерофилинов. [c.344]

    Биологические функции липидов крайне разнообразны. Они являются главными компонентами биомембран запасным, изолирующим и защищающим органы и ткани материалом наиболее калорийной частью пищи важным и обязательным компонентом диеты человека и животных регуляторами транспорта воды и солей иммуномодуляторами регуляторами активности некоторых ферментов эндогормонами передатчиками биологических сигналов. Этот список увеличивается по мере изучения липидов. Поэтому для понимания сути многих биологических процессов нужно иметь представление о липидах на таком же уровне, как о белках, нуклеиновых кислотах и углеводах. Рассмотрим подробнее главные функции, выполняемые липидами в живых организмах энергетическую, структурную и заи итную. [c.250]

    Историю биохимии (и органической химии) принято отсчитывать с конца XVIII в., когда впервые были выделены из организмов в чистом виде некоторые соединения — мочевина, лимонная кислота, яблочная кислота и др. В то время еще не было представлений о строении этих веществ. Длительный период развития биохимии, вплоть до середины XX в., заполнен открытием все новых веществ в живой природе, исследованием их структуры и химических превращений в организмах. Важнейшими достижениями этого периода явилось установление общего плана строения главных биополимеров — белков и нуклеиновых кислот, и раскрытие основных путей химических превращений веществ в организмах (метаболизм). В этот же период произошла дальнейшая дифференциация биохимии в ней стали выделять статическую биохимию, изучающую химический состав организмов динамическую биохимию, изучающую метаболизм функциональную биохимию, изучающую связь химических процессов с физиологическими (биологическими) функциями. [c.12]

    В гл. 9 были рассмотрены результаты теоретического анализа ангиотензина П (АТ П), Asp -Aгg2-VaP-Tyr -VaP-His6-Pro -Phe [378]. Исследование конформационных возможностей октапептидного гормона позволило установить его структурную организацию и тем самым определить набор низкоэнергетических пространственных форм, потенциально являющихся биологически активными. Следующая задача заключается в выявлении в найденном наборе оптимальных конформаций структур АТ П, актуальных для реализации гормональной активности, и определении конкретных связей между ними и функциями. Это тема следующего, четвертого, тома издания "Проблема белка". Здесь же на примере главным образом АТ II только отметим некоторые причины, сдерживающие установление принципов структурно-функциональной организации гормонов, а также покажем, что достижение цели немыслимо без решения обратной структурной задачи. [c.566]

    Многие белки образуют волокна, навитые друг на друга или уложенные плоским слоем они вьшолняют опорную или защитную функцию, скрепляя биологические структуры и придавая им прочность. Главным компонентом хрящей и сухожилий является фибриллярный белок коллаген, имеющий очень высокую прочность на разрыв. Выделанная кожа представляет собой почти чистый коллаген. Связки содержат элаетин-струк- [c.139]

    Теперь мы знаем, что при обмене веществ кровь играет важнейшую роль транспортного средства. Перенос газов, удаление чужеродных веществ, заживление ран, транспортировка питательных веществ, продуктов обмена, ферментов и гормонов являются главными функциями крови. Вся пища, которую человек съедает, подвергается в желудке и кишечнике химической переработке. Эти превращения осуществляются под действием особых пищеварительных соков — слюны, желудочного сока, желчи, поджелудочного и кишечного сока. Активным началом пищеварительных соков являются, главным образом, биологические катализаторы — так называемые ферменты, или энзимы. Например, ферменты пепсин, трипсин и эрепсин, а также сычужный фермент химозин, действуя на белки, расщепляют их на простейшие фрагменты — аминокислоты, из которых организм может строить свои собственные белки. Ферменты амилаиза, мальтаза, лактаза и целлюлаза участвуют в расщеплении углеводов, тогда как желчь и ферменты группы липаз способствуют перевариванию жиров. [c.317]

    Реакционная способность одной и той же функциональной группы в различных белках может быть неодинаковой в зависимости от природы последних и от описанного выше типа экранирования. Большинство исследований по модификации белка, представлявших интерес вследствие зависимости между структурой белка и его биологической активностью или функцией, проводилось на растворимых глобулярных белках. Однако было проведено также большое количество работ по окислению фибриллярных белков (например, кератина шерсти) и по введению групп, создающих поперечные связи в этих веществах. Исследование фибриллярных белков ограничено неприменимостью критериев идеальных реакций и отсутствием у этих белков биологической активности. Таким образом, для химика, исследующего белки, понятие о доступности функциональных групп связывается главным образом с исследованиями, которые проводятся на растворимых корпускулярных белках. Нерастворимые фибриллярные белки реагируют гораздо труднее. Александер и сотрудники [40] показали, что число карбоксильных групп в шерсти, доступных для этерификации с помощью спиртов, изменяется в зависимости от молекулярного веса последних. Не все карбоксильные группы шерсти доступны даже для таких небольших молекул, как молекулы метилового спирта, который, согласно ранее проведенным исследованиям Френкель-Конрата и [c.276]

    Эта простота в сложности была вскрыта в результате современного развития биохимии. Оказалось, например, что все разнообразнейшие белковые тела, число которых согласно Полингу превышает 100 ООО, представляют собой единообразные по существу макромолекулы, различающиеся лишь последовательностью расположения аминокислотных остатков в боковых цепях. Мало того, белки всех живых существ—от простейших до человека—содержат один и тот же набор из примерно двадцати аминокислотных остатков. Одни и те же нуклеиновые кислоты, составляющие главную часть клеточного ядра, несут функции хранителя кода генетической информации и матрицы для воспроизведения всех основных белков. Одно и то же вещсстБО—адсиозинтрифосфат—служит универсальным аккумулятором и трансформатором энергии для всей живой природы. Такое же единообразие обнаруживается в структуре и функциях других важнейших биологических веществ—витаминов и гормонов. [c.5]


Смотреть страницы где упоминается термин Белки и их главные биологические функции: [c.360]    [c.88]    [c.361]    [c.332]    [c.20]    [c.176]    [c.370]    [c.66]    [c.107]    [c.153]    [c.362]    [c.224]   
Смотреть главы в:

Биологическая химия -> Белки и их главные биологические функции




ПОИСК





Смотрите так же термины и статьи:

Белки функции



© 2025 chem21.info Реклама на сайте