Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура актиновых нитей

Рис. 18.24. Модель, иллюстрирующая изменение структуры актиновых нитей. А. Выключенное состояние при низком уровне Са тропомиозин блокирует участки связывания миозина с актином. Б. Включенное состояние при высоком уровне Са тропомиозин смещается, обнажая участки связывания с миозином (указаны стрелками). А — актин — тропомиозин. Тропонин не показан, он расположен ближе к субъединицам актина. Рис. 18.24. Модель, иллюстрирующая изменение структуры актиновых нитей. А. Выключенное состояние при низком уровне Са <a href="/info/235205">тропомиозин блокирует</a> участки связывания миозина с актином. Б. <a href="/info/51086">Включенное состояние</a> при высоком уровне Са тропомиозин смещается, обнажая участки связывания с миозином (указаны стрелками). А — актин — тропомиозин. Тропонин не показан, он расположен ближе к субъединицам актина.

    Чем больше клетка, чем сложнее и специализированнее ее внутренние структуры, тем больше необходимость контролировать положение и перемещение этих структур. Все эукариотические клетки имеют внутренний скелет цитоскелет, определяющий форму клеток, их способность двигаться и перемещать органеллы из одной части клетки в другую Цитоскелет образован сетью белковых волокон Наиболее важные среди них -это актиновые нити и микротрубочки (рис 1-25), которые, очевидно, возникли на очень ранних этапах эволюции, так как встречаются у всех эукариот практически в неизменном виде. И те, и другие участвуют в механизмах клеточных движений, например, актиновые нити (филаменты) обеспечивают мышечное сокращение, а микротрубочки являются основными структурными и силовыми элементами, обусловливающими движение ресничек и жгутиков - длинных выростов на поверхности некоторых клеток, биения которых напоминают удары бича. [c.34]

    Разнообразные функции цитоскелета зависят от трех главных типов белковых нитей - актиновых филаментов, микротрубочек и промежуточных филаментов. Пити этих трех типов построены из разных структур в зависимости от того, с какими дополнительными белками они ассоциированы. Некоторые из этих белков соединяют филаменты друг с другом или с иными компонентами клетки, например с плазматической мембраной. Другие определяют время и место сборки актиновых филаментов и микротрубочек, регулируя скорость и степень их полимеризации. И наконец, есть белки, благодаря взаимодействию которых с филаментами, осуществляется движение наиболее изученные примеры - сокращение мышц, зависящее от актиновых филаментов, и биение ресничек, зависящее от микротрубочек. [c.254]

    Тропонин (содержание в миофибриллах 5 %) — белок, состоящий из трех субъединиц глобулярной структуры. Тропонин за счет нековалентных межмолекулярных взаимодействий связан с тропомиозином и актином. Межмолекулярный комплекс тропонин—тропомиозин —актин выполняет важную функцию в процессе мышечного сокращения — обеспечивает сцепление миозиновых и актиновых нитей. [c.479]

    Соверщенно очевидно, что механическую работу, включающую амебоидные движения, морфогенез, деление, эндоцитоз, экзоцитоз, внутриклеточный транспорт и изменение формы, выполняют и немы-щечные клетки. Эти клеточные функции осуществляются обширной внутриклеточной сетью волокнистых структур, образующих цитоскелет. Клеточная цитоплазма — это не просто мешок с жидкостью, как думали раньше. Практически все эукариотические клетки содержат три типа волокнистых структур актиновые филаменты (нити) (7—9,5 нм в диаметре), микротрубочки (25 нм) и промежуточные нити (10—12 нм). Каждый из этих типов можно отличить с помощью специфических биохимических и электронно-микроскопических методик. [c.342]


    Спирали весьма распространены феди биологических структур. Спирализации подвержены и молекулы, состоящие из субъединиц, соединенных ковалентными связями (ДНК), и большие белковые молекулы с нековалентными связями (актиновые нити). Это неудивительно спираль возникает при простом накладывании друг на друга многих субъединиц, каждая из которых строго повторяет положение предыдущей. [c.115]

    Верхняя часть моторного домена состоит из двух неравных, не имеющих контактов, независимых субдоменов, отделенных друг от друга протяженной узкой щелью, которая начинается непосредственно под нуклеотид-связывающим карманом и проходит сквозь всю головку вплоть до актин-связывающего участка на другой стороне субфрагмента 1. Как показало сопоставление молекулярных структур актина (Холмс и др., 1990) и субфрагмента 1, в образовании прочного контакта между двумя белками могут принимать участие как электростатические взаимодействия комплементарно заряженных групп обоих белков, так и стереоспецифические взаимодействия гидрофобных остатков, расположенных на обоих субдоменах мотор-ного домена и на двух соседних глобулах актиновой нити. При этом обеспечение строгого стереоспецифического соответствия контактных участков возможно лишь при закрытой щели в моторном домене. Как будет показано ниже, конформационные перестройки, связанные с открыванием и закрыванием этой щели, могут играть важную роль в сопряжении биохимического и механического циклов мостика. [c.255]

    В отличие от мономеров актина и тубулина, которые представляют собой глобулярные белки, субъединицы ПФ имеют вытянутую, фибриллярную форму Они объединяются в продольные пучки, где перекрываются по длине, так что образуют длинные нити с высокой механической прочностью. В латеральных взаимодействиях, за счет которых строятся ПФ, нередко участвует лишь часть молекулы белковой субъединицы ПФ. поэтому структура остальной ее части может значительно варьировать, не изменяя общего строения нити В связи с этим ПФ в отличие от актиновых филаментов и микротрубочек построены из полипептидов с весьма различной молекулярной массой - от 40 до 130 тыс. в зависимости от типа клеток. [c.314]

    Как отмечалось выше, миозин присутствует в основании микроворсинок в связанном с актиновыми микрофиламентами состоянии. Он выявляется также по ходу актиновых волокон, но в виде более тонких и коротких нитей, чем в мышцах. Эти нити, по-видимому, играют роль в поддержании волокнистой структуры актина. [c.344]

    После многолетних попыток удалось закристаллизовать молекулы G-актина, причем только вместе с молекулами ДНКазы I в соотношении 1 1. Поэтому трехмерная структура мономерного актина на атомном уровне стала известна из данных рентгеновской кристаллографии комплекса G-актин-ДНКаза I [453]. Одновременно была пол чена диаграмма рентгеновского рассеяния F-актинового волокна с разрешением 6 А и найдена ориентация G-актинового мономера в двойной спирали полимера путем сравнения рассчитанных картин рентгеновской дифракции с наблюдаемой [452]. Оставшиеся неустра-ненными различия отражают тот факт, что полимеризация актина сопровождается незначительными конформационными изменениями. Но лишь отчасти, поскольку использование уточненной структурной модели G-актина в построении модели F-актиновой нити привело недавно к лучшему совпадению результатов расчета с экспериментальными данными [454]. Дальнейшее уточнение модели затруднено отоутствием для F-актина диаграммы рентгеновской дифракции более высокого, чем 6 А, разрешения. Выход может быть найден при обращении к теоретическому подходу и использованию методов конформационного анализа и молекулярной динамики [455,456]. Атомная модель Р-актина, построенная путем согласования данных рентгеноструктурного анализа кристаллов G-актина и тонких филаментов F-актина, совпала с атомной моделью, реконструированной по снимкам криоэлектронной микроскопии актиновой нити [457,458]. [c.123]

    Помимо этих трех основных типов белковых филаментов цитоскелет включает также множество различных вспомогательных белков, которые либо связывают филаменты друг с другом или с другими клеточными структурами (например, с плазматической мембраной), либо влияют на скорость и степень полимеризации филаментов. Специфические комплексы вспомогательных белков, взаимодействуя с белковыми филаментами, обеспечивают процессы движения. Два наиболее изученных примера-мышечное сокращение, за которое ответственны актиновые филаменты, и подвижность ресничек и жгутиков, связанная с функцией микротрубочек. Хотя в этих видах движения участвуют разные наборы белков, в обоих случаях движение связано с гидролизом АТФ и основано на одном принципе-на скольжении белковых нитей относительно друг друга. [c.75]

    Структура актиновых нитей. Актиновые нити состоят из трех белков актина, тропомиозина и тропонина. [c.478]


    Структура актиновых нитей. В состав тонких филаментов входят белки актин, составляющий, как уже отмечалось, основу нитей, тро-помиозин и тропонин. Стандартная процедура выделения актина заключается в экстракции высушенной и измельченной мышечной ткани разбавленным солевым раствором. Такая обработка расщепляет актиновые филаменты на глобулярные субъединицы, каждая из которых образована одной полипептидной цепью с молек. массой 41,8 кДа это глобулярный актин или О-актин. С каждой молекулой О-актина связан один ион Са +, стабилизирующий ее глобулярную конформацию. Кроме того, с О-актином невалентно ассоциирована одна молекула АТР. При невалентной полимеризации глобулярного актина концевой фосфат АТР отщепляется и образуется фибриллярный актин или Р-актин. Полимеризацию можно вызвать повышением концентрации соли до уровня, близкого к физиологическому. Процесс не требует затраты энергии, хотя и сопровождается гидролизом АТР, который значительно повышает скорость полимеризации и оказывает влияние на его динамику. По данным электронной микроскопии актиновые филаменты состоят из двух цепей глобулярных молекул, длина которых равна 65 А, а толщина в самой широкой части 40 А. Цепи Р-актина образуют двойную спираль, имеющую 13 молекул в шести витках, повторяющихся каждые 360 А [452]. [c.122]

    Как спиральные вирусы, так и пили бактерий могут рассматриваться как одиночные спирали из субъединиц, которые иногда называют спиралями с одним доступным концом. Актиновая нить (рис. 4-7) состоит из двух цепей, построенных из субъединиц эти цепи закручены одна вокруг другой [40], т. е. структура имеет два доступных конца. Жгутики бактерий Е. соН и Salmonella (рис. 4-7, В) можно представить себе как пять цепочек, закрученных вместе вокруг одной и той же оси (одна из цепочек на рисунке для наглядности заштрихована). Те же жгутики можно, однако, рассматривать и как структуры, образованные И параллельными нитями, закрученными в спираль со значительно большим шагом [41]. Жгутики бактерий обладают многими удивительными свойствами (см. дополнение 4-Б). Так, например, на электронно-микроскопических фотографиях они обычно выглядят как надспирали с шагом, равным - 2,5 мкм. О каких особенностях молекулярной упаковки может свидетельствовать этот факт Было бы очень хорошо, если бы читатель подумал и сам решил этот вопрос, но не слишком спешил с ответом. [c.276]

    У высших организмов процессы биосинтеза белка регулируются значительно сложнее. Хотя каждая клетка позвоночного содержит полный геном данного организма, в клетке данного типа экспрессируется только часть структурных генов. Почти во всех клетках высших животньк присутствуют наборы основных ферментов, необходимые для реализации главных путей метаболизма. Однако клетки разных типов, например клетки мышц, мозга, печени, содержат свойственные только им структуры и выполняют только им присущие биологические функции, реализация которых обеспечивается наборами специализированных белков. Например, клетки скелетных мьшщ содержат огромное количество ориентированных миозиновых и актиновых нитей (разд. 14.14), тогда как в печени миозина и актина очень мало. Точно так же клетки мозга содержат ферменты, необходимые для синтеза большого числа различных веществ-медиаторов нервных импульсов, в то время как клетки печени этих ферментов вообще не содержат, Вместе с тем в печени млекопитающих присутствуют все ферменты, необходимые для образования мочевины, тогда как в других тканях этих ферментов нет и они не обладают способностью синтезировать мочевину (разд. 19.15). Кроме того, биосинтез разных наборов специализированных белков должен быть точно запрограммирован в последовательности и времени их появления в ходе строго упорядоченной дифференцировки и роста высших организмов. Пока нам сравнительно мало что известно о регуляции экспрессии генов в эукариотических организмах с их многочисленными хромосомами. Однако сегодня мы располагаем значительной информацией о регуляции синтеза белка у прокариот. К ней мы сейчас и перейдем. [c.954]

    Тшты молекулярных моторов. Мостиковая гипотеза генерации силы была сформулирована более 40 лет тому назад. За истекшие годы была расшифрована структура саркомера и составляющих его белков, с высоким временным разрешением исследована механика и энергетика мышечного сокращения, изучена биохимия реакции гидролиза АТФ актомиозином. Однако молекулярный механизм трансформации химической энергии АТФ в механическую работу продолжает оставаться неясным. Со времени открытия Энгельгардтом и Любимовой АТФазной активности актомиозина и последующей локализации АТфазного центра в глобулярном субфрагменте миозина, субфрагмент 1 начинает претендовать на роль основного элемента мышечного двигателя . В последнее время эти притязания получают все большее обоснование. Исследования, проведенные с помощью так называемых искусственных подвижных систем показали, что субфрагмент 1 способен осуществлять движение по иммобилизованным актиновым нитям без участия не только миозиновых нитей, но и субфрагмента 2. Обнаружен целый ряд других миозиноподобных молекулярных моторов , включая многочисленное семейство одноголовых миозинов, а также кинезин и цитоплазматический динеин. Предполагают, что в каждой клетке имеется не менее 50 различных молекул, использующих энергию гидролиза АТФ для осуществления движения по актиновым филаментам или по микротрубочкам. В связи с этим вопрос о механизме трансформации энергии с помощью миозина приобретает все большее значение. Недавние успехи в расшифровке структуры глобулярного фрагмента миозина — субфрагмента 1 — позволили прояснить некоторые детали этого механизма. [c.253]

Рис. 3-42. Некоторые структуры, образующиеся при самосборке белковых субъедипиц. А. Три общих типа спиральных ансамблей белка В актиновой нити содержится примерно две глобулярные белковые субъединицы на один оборот, а многие другие цитоскелетные белки содержат стержневидные участки, в которых две а-спирали объединяются в структуру " oiled oil". В спирали коллагена три вытянутые белковые цепи объединяются друг с другом на большом расстоянии с образованием очень прочной стержнеобразной структуры. Б. Гексагонально упакованные Рис. 3-42. <a href="/info/1490528">Некоторые структуры</a>, образующиеся при <a href="/info/509093">самосборке белковых</a> субъедипиц. А. Три <a href="/info/1233794">общих типа</a> спиральных ансамблей белка В <a href="/info/566198">актиновой нити</a> содержится примерно две <a href="/info/644969">глобулярные белковые</a> субъединицы на <a href="/info/681111">один оборот</a>, а <a href="/info/1633379">многие другие</a> <a href="/info/1889634">цитоскелетные белки</a> содержат <a href="/info/803679">стержневидные</a> участки, в которых две а-спирали объединяются в структуру " oiled oil". В спирали коллагена три вытянутые <a href="/info/196653">белковые цепи</a> объединяются друг с другом на <a href="/info/749293">большом расстоянии</a> с образованием <a href="/info/1599971">очень прочной</a> стержнеобразной структуры. Б. Гексагонально упакованные
    Рис 11-48. Некоторые примеры конкурентных и кооперативных взаимодействий между актин-связывающими белками. Тропомиозин п филамин прочно связываются сатиновыми филаментами, но при )том конкурируют друг с другом. Так как тропомиозин связывается с актиновыми нитями кооперативно, на обширных участках их сети будет преобладать либо тропомиозин, либо филамин. Другие актин-связывающие белки, такие как и актинин или миозин, будут конкурентно вытесняться из специфических участков например, а-актинин in vitro связывается но всей длине очищенных актиновых филаментов, но с такими же филаментами в клетке он связывается относительно слабо - там он находится в основном вблизи нлюс-концов из-за конкуренции с другими белками. Напротив, кооперативные взаимодействия могут усиливать связывание так, тропомиозин, но-видимому, снособствует связыванию миозина. Как полагают, множество подобных взаимодействий между актин-связывающими белками, представленными на рис. 11-47 (и некоторыми другими), обусловливает необычайное многообразие актиновых структур во всех [c.291]

    Вероятно, особые механические свойства стереоцилий, такие как жесткость и способность сгибаться только у основания, необходимы для тонкой избирательной чувствительности волосковых клеток, благодаря которой они могут, например, реагировать на звуки определенной высоты, выделяя их среди шума в тысячи раз большей интенсивности (разд. 18.5.2). Возможно, что эти механические свойства стереоцилий зависят от расположения поперечных сшивок между актиновьпии филаментами, составляющих их сердцевину. Так, например, на поперечном срезе стереоцилии ящерицы актиновые нити образуют довольно нерегулярную структуру, в то время как на продольных срезах виден строгий порядок в их расположении-точки перекреста цепей у всех актиновых спиралей находятся в одной поперечной плоскости. Как показано на рис. 10-57, это результат того, что связующий белок присоединяется к стерически строго определенным участкам двух соседних актиновых спиралей при этом создается регулярный пучок филаментов даже при неправильном расположении последних в поперечной плоскости. [c.112]

    Актин входит в состав многих клеточных структур и может связываться с целым рядом специфических белков. Жесткие пучки параллельно расположенных актиновых филаментов, скрепленных белковыми сшивками (например, фимбриновыми), имеются в микроворсинках и стереоцилиях, где они выполняют главным образом структурную роль. Пучки актиновых нитей, связанные с короткими биполярными агрегатами молекул немышечного. миозина, встречаются в определенных участках клетки, где нужна сократительная активность, например в сократимом кольце делящейся клетки, в опоясывающих десмосомах у апикальной поверхности эпителиальных клеток, а также в напряженных нитях, характерных для клеток, растущих в монослойной культуре. Менее упорядоченные системы актиновых филаментов содержатся во всей цитоплазме и могут придавать ей свойства геля. Густая сеть таких филаментов образует непосредственно под плазматической мембраной так называемый кортикальный слой. Эта сеть формируется с помощью гибких сшивающих белков, таких как филамин она способна обратимо изменять свои механические свойства в зависи.ности от концентрации ионов Са , что сопровождается повышением или понижение.ы вязкости цитоплазмы эти изменения происходят при участии актин-фрагментирующих белков, таких как гельзолин. Предполагается, что актиновые сети, прикрепленные с помощью специальных белков к плазматической мембране, взаимодействуют с немышечным миозином, обеспечивая подвижность клеточной поверхности, и играют ключевую роль в сложном процессе передвижения всей клетки. [c.120]

    Механизм, управляющий движением цитоплазмы, полностью еще не изучен, однако ясно, что в этом движении принимают участие органеллы, называемые микрофиламентами. Мик-рофиламеиты содержат, по-видимому, актин и миозин — два белка, участвующие в мышечном сокращении у животных сокращение мышцы происходит в результате взаимного смещения актиновых и миозиновых нитей, сопровождающегося расходованием энергии АТР, Выяснилось, что циклоз чувствителен к содержанию АТР в клетке и что он протекает активно только при тех условиях, при которых возможен синтез АТР. Вещества, нарушающие структуру микрофиламентов, подавляют циклоз. Установлено, например, что такой лекарственный препарат, как цитохалазин В, вызывает агрегацию микрофиламентов и вместе с тем подавляет, во-первых, движение цитоплазмы во многих растительных клетках и, во-вторых, движение гигантских хлоропластов различных водорослей. (Некоторые хлоропласты способны перемещаться в цитоплазме и ориентироваться — обычно в ответ на изменение освещенности — таким образом, чтобы их плоские поверхности располагались параллельно илн перпендикулярно поверхности листа см. гл. 11) Подавление, вызванное инкубацией клеток в цитохалазине В, можно снять отмыванием тканей от этого препарата. [c.75]

    Актиновая нить состоит из двух закрученных один вокруг другого мономеров актина толщиной по 5 нм (рис. 7.2). Эта структура похожа на две нитки бус, скрученные по 14 бусин в витке. В цепях актина регулярно примерно через 40 нм встроены молекулы тропонина, а сама цепь охватывает нить тропомиозина. При сокращении мышцы тонкие нити вдвигаются между толстыми. Происходит относительное скольжение нитей без изменения их длины. Этот процесс обусловлен взаимодействием особых выступов миозина - поперечных мостиков с активными центрами, расположенными на актине. Мостики отходят от толстой нити периодично на расстоянии 14,5 нм друг от друга. [c.145]

    Миозин является одним из основных сократительных белков мышц, составляющий около 55 % общего количества мышечных белков. Из него состоят толстые нити (филаменты) миофибрилл. Молекулярная масса этого белка — около 470 ООО. В молекуле миозина различают длинную фибриллярную часть и глобулярные структуры (головки). Фибриллярная часть молекулы миозина имеет двуспиральную структуру (рис. 117). В составе молекулы выделяют шесть субъединиц две тяжелые полипептидные цепи (молекулярная масса 200 ООО) и четыре легкие цепи (молекулярная масса 1500—2700), расположенные в глобулярной части. Основной функцией фибриллярной части молекулы миозина является способность образовывать хорошо упорядоченные пучки миозиновых филаментов или толстые протофибриллы (см. рис. 117). На головках молекулы миозина расположены активный центр АТФ-азы и актинсвязывающий центр, поэтому они обеспечивают гидролиз АТФ и взаимодействие с актиновыми филаментами. [c.296]

    В клетках, не обработанных детергентом, структура цитоплазмы еще сложнее. Пространство между филаментами цитоскелета заполнено зернистым основным веществом ("ground substan e"), которое, как считают, представляет собой очень концентрированную смесь растворимых белков, имеющихся в живой клетке. Разнообразные мембранные органеллы тоже погружены в этот плотный матрикс и соединены с филаментами цитоскелета тонкими белковыми нитями. И гранулярного материала, и органелл тем больше, чем ближе к центральной области клетки, где сосредоточены микротрубочки и промежуточные филаменты и где, как можно увидеть при помощи светового микроскопа с видеоприставкой, происходит большая часть пропессов цитоплазматического гранспорта. В более периферийных участках значительно гуще сеть актиновых филаментов, которые как бы вытесняют оттуда большую часть мембранных органелл, а возможно, и какую-то долю гранулярного материала (рис. [c.321]

    Кто-то сказал, что хромосомы в митозе напоминают покойника на похоронах они дают повод для действий, но не принимают в них активного участия. Активная роль принадлежит двум особым цитоскелетным структурам, которые временно образуются в М-фазе. Первым появляется двухполюсное митотическое веретено, состоящее из микротрубочек и связанных с ними белков. Сначала оно выстраивает реплицированные хромосомы в плоскости деления клетки затем каждая хромосома разделяется на две дочерние, которые разводятся нитями веретена к противоположным сторонам клетки. Вторая цитоскелетная структура, необходимая в М-фазе животных клеток, - это сократимое кольцо из актиновых и миозиновых филаментов. появляюшееся чуть позже под плазматической мембраной. Это кольцо втягивает мембрану внутрь, разделяя клетку на две, и тем самым обеспечивает, что каждая дочерняя клетка получит не только один полный набор хромосом, но и половину содержимого цитоплазмы и органелл родительской клетки. Эти две цитоскелетные структуры содержат разные наборы белков и в некоторых специализированных клетках могут формироваться независимо друг от друга. Однако их образование обычно тесно скоординировано, [c.438]

    Два наиболее важных типа таких нитей-это актиновые филаменты (часто называемые микрофиламентами) и микротрубочки. Те и другие состоят из глобулярных белковых субъединиц, которые в клетке легко могут соединяться между собой и разъединяться. Существуют тонкие механизмы, контролирующие сборку этих полимерных структур в цитоплазме из свободных субъе-дипиц-мономеров. В больщинстве животных клеток имеются еще белковые нити третьего типа, по своей толщине занимающие промежуточное положение между актиновыми филаментами и микротрубочками и потому называемые промежуточными филаментами эти структуры состоят из фибриллярных белковых субъединиц, и они гораздо более стабильны, чем микрофиламенты и микротрубочки. [c.75]

Рис. 10-57. Схема расположения актиновых филаментов и поперечных сшивок между ними в стереоцилиях ящерицы. Пять филаментов, изображенных слева, уложены не только параллельно друг другу, но еще и так, что положение витков спирали во всех двойных нитях одинаково (отдельные мономеры актина не показаны). Справа изображена серия поперечных срезов данного пучка. Обратите внимание, что сши-вочный белок, например фимбрин (выделен красным цветом), на разных уровнях может связывать разные пары смежных филаментов, поэтому в поперечном сечении филамент имеет нерегулярную структуру. Рис. 10-57. <a href="/info/337514">Схема расположения</a> <a href="/info/1339102">актиновых филаментов</a> и поперечных сшивок между ними в <a href="/info/1339592">стереоцилиях</a> ящерицы. Пять филаментов, изображенных слева, уложены не только параллельно <a href="/info/16133">друг другу</a>, но еще и так, что положение витков спирали во всех <a href="/info/983382">двойных нитях</a> одинаково (<a href="/info/1594462">отдельные мономеры</a> актина не показаны). Справа изображена серия <a href="/info/713810">поперечных срезов</a> данного пучка. Обратите внимание, что сши-<a href="/info/1453609">вочный</a> белок, например <a href="/info/1339636">фимбрин</a> (<a href="/info/727933">выделен красным</a> цветом), на разных уровнях может связывать <a href="/info/897267">разные пары</a> смежных филаментов, поэтому в <a href="/info/3798">поперечном сечении</a> филамент имеет нерегулярную структуру.
    Описанная двойственность организации кортикальной актиновой сети свойственна не только клеткам кишечного эпителия. Еще один тип эпителиальных клеток, в которых с подмембранной сетью сочетаются полуостровные актиновые пучки, — это волосковые клетки улитки уха, от поверхности которых отходят так называемые сте-реоцилии. Каждая стереоцилия содержит сужающийся пучок актиновых филаментов, связанных поперечными мостиками друг с другом и клеточной мембраной. Некоторые из этих филаментов, выступая своими концами в основную часть клетки, образуют корешки , которые прикрепляются к подмембранной сети, состоящей из актиновых микрофиламентов и тонких нитей диаметром 3 — 4 нм. Белок тонких нитей относится, вероятно, к семейству спектрина. Громкий звук вызывает в строении стере о-цилий изменения, заключающиеся, по-видимому, в деполимеризации или фрагментации актиновых филаментов у основания стереоцилии — там, где филаменты выходят в кортикальную сеть, — ив снижении числа поперечных мостиков между актиновыми филаментами следствием таких изменений явлйется уменьшение жесткости структуры стереоцилий [99]. [c.60]


Смотреть страницы где упоминается термин Структура актиновых нитей: [c.235]    [c.41]    [c.46]    [c.233]    [c.237]    [c.151]    [c.342]    [c.342]    [c.146]    [c.201]    [c.34]    [c.151]    [c.275]    [c.276]    [c.344]    [c.416]    [c.385]    [c.271]    [c.183]    [c.45]    [c.74]   
Проблема белка (1996) -- [ c.122 ]




ПОИСК







© 2024 chem21.info Реклама на сайте