Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительно-восстановительное равновесие аскорбиновой кислоты

    Окислительно-восстановительное равновесие Pt(IV) ггР1(П) используется в анализе для объемного определения платины. Способность платинитов и платинатов восстанавливаться до металлического состояния сильными восстановителями используется для количественного весового определения платины или для извлечения платины из растворов, содержащих некоторые неблагородные металлы. В качестве восстановителей применяют в этих Случаях водород в момент выделения (цинк, магний, железо в кислой среде), гидразин, гидроксиламин, муравьиную кислоту или формиат натрия, каломель, хлористый хром, хлористый титан, аскорбиновую кислоту и др. [c.13]


    Исследуя свойства радиопрофилактических веществ, Ф. Ю. Ра-чинский и др. (1963) пришли к выводу, что наиболее общим в действии различных протекторов является их антиокислительная активность, но не все антиоксиданты способны защищать биологические объекты от действия ионизирующей радиации. Примером несоответствия реального радиозащитного эффекта на биологических объектах и физико-химических параметров препаратов in vitro могут служить величины окислительно-восстановительного потенциала аскорбиновой кислоты и каротина, проявляющих сильное антиокислительное и радиозащитное действие в растворах и значительно или полностью утрачивающих эти свойства в опытах на различных биологических объектах. Снижение стационарного окислительно-восстановительного потенциала в тканях, наблюдаемое при введении в организм радиопротекторов, свидетельствует о том, что система в целом под влиянием радиопротектора проявляет более выраженные антиокислительные свойства. Это связано с многочисленными и весьма разнообразными биохимическими процессами, приводящими к возрастанию содержания в измеряемой системе восстановленных недоокисленных эндогенных веществ— доноров электронов — и (или) к снижению уровня окислительных эндогенных веществ. Состав эндогенных веществ, определяющих уровень окислительно-восстановительного потенциала, может быть весьма разнообразным. Поэтому естественно предположить, что даже в том случае, когда радиопротекторы не вызывают изменения суммарного уровня потенциала в тканях животных, они все же могут привести при сохранившемся динамическом равновесии между окислительными и восстановительными формами к накоплению эндогенных веществ, ответственных за повышение устойчивости организма к действию ионизирующей радиации, например эндогенных протекторов. [c.268]

    На рис. 47 представлены типичные кривые потенциометрической регистрации окислительно-восстановительного потенциала суспензии клеток асцитной карциномы Эрлиха мыши в присутствии феррицианида калия (10" М). Видно, что суспензия свежеотмытых клеток способна восстанавливать Кз[Ре(СК)в] (см. рис. 47, 1) в отличие от надосадка этой же суспензии клеток (см. рис. 47, V). Внесение дитиодипиридина (1 мМ) — соединения, легко проникающего в асцитные клетки и быстро окисляющего редокс-системы, связанные с SH-глутатионом [254], прекращает восстановление феррицианида (см. рис. 47, пунктирная линия). Эти данные свидетельствуют о том, что Кз[Ре(СК)в] восстанавливается при участии внутриклеточных окисли-тельно-восстановительных систем. Внесение аскорбиновой кислоты (10 мкМ) заметно увеличивает скорость восстановления феррицианида (см. рис. 47, 3). Поскольку количество вносимого аскорбата на порядок ниже, чем количество феррицианида, наблюдаемый эффект не может быть объяснен прямой реакцией аскорбиновой кислоты с феррицианидом калия и скорее всего обеспечивается либо действием дегидроаскорбата на окислительно-восстановительное равновесие, либо влиянием его на транспорт восстановительных эквивалентов через клеточную мембрану. [c.209]


    Окислительно-восстановительное равновесие в системе Ir(IV)/Ir(III) используется для объемного определения иридия. При определении иридия (1П) в качестве окислителей применяют лермантанат калия, иодат калия н др. Ион [Ir le] титруют различными восстановителями иодидом калия, хлористым титаном, хлористой медью, аскорбиновой кислотой, солью Мора, гексацианферроатом, гидрохиноном и др. [c.16]

    Окислительно-восстановительное равновесие ь-аскорбиновой кислоты [c.145]

    Выло найдено [238, 246, 258, 259], что концентрация аскорбиновой кислоты в растениях увеличивается при снабжении глюкозой. Условия, косвенно влияющие на образование сахара, например обильное снабжение двуокисью углерода и хорошее освещение, также увеличивали концентрацию аскорбиновой кислоты. Аскорбиновая кислота характерна своей кислотностью и способностью к обратимому окислению. Два атома водорода, отмеченные в формуле звездочками, диссоциируют как ионы Н+ с константой диссоциации, равной 6,2 10- (рК = 4,21). Измерение окислительновосстановительного потенциала дает величину, равную 9,1 10- . Следовательно, в тканях почти вся аскорбиновая кислота должна находиться в виде анионов или металлоорганического комплекса. Большая константа диссоциации на первый взгляд противоречит принятой формуле, так как в ней нет карбоксильной группы. Однако группа —СОН=СОН—СО— имеет, повидимому, кислый характер, сходный с карбоксильной группой (см. [241]). Аскорбиновая кислота имеет величину Х = 0,838 она может окисляться дальше, теряя два или даже четыре водородных атома. В определенном интервале pH такая потеря обратима, особенно поскольку дело касается первой ступени. Эта ступень превращает аскорбиновую кислоту в дегидроаскорбиновую (СеНцОв, Х = 0,75, см. формулу на стр. 281). Делалось много попыток определить окислительно-восстановительный потенциал системы аскорбиновая кислота—дегидроаскорбиновая кислота [222—224, 225, 231, 240]. Эта система электрохимически инертна, и надо добавлять электродные катализаторы , например тионин и метиленовую синь, для того чтобы ускорять установление электродного равновесия [240]. Окислитель (дегидроаскорбиновая кислота) неустойчив в растворе при pH > 5,75 [225, 240]. Поэтому надежные потенциалы можно получить лишь в кислой области. При pH 6 и выше кажущийся нормальный потенциал становится со временем ноложительнее, потому что окислитель постепенно исчезает нз системы. Принимая во внимание эти осложнения, Болл [240] смог вычислить нормальные потенциалы системы аскорбиновая кислота — дегидроаскорбиновая кислота при 30° между pH 1 и 8,6 и подучил значения  [c.282]

    По мнению исследователя, высокая концентрация марганца, дающего соединения с высоким окислительным потенциалом, необходима для синтеза веществ с высокой восстановительной способностью (таннидов, аскорбиновой кислоты и других) и поддержания в клетке растений окислительно-восстановительного равновесия. Это равновесие препятствует установлению вредного для биохимических процессов излишне положительного или отрицательного редокс-потенциала. Указанное положение нашло подтверждение в следующих фактах, полученных в экспериментах Леванидова и др. исследователей. [c.85]

    Конант и др. изучали необратимое окисление — восстановление органических соединений и разработали методы определения того, что они назвали кажущимся окислительно-восстановительным потенциалом. Для этого подбирают легко обратимые системы с эквивалентным соотношением окисленной и восстановленной форм. К такой системе прибавляют исследуемое вещество и измеряют потенциал обратимой системы. С помощью этого метода можно необратимый потенциал заключить между потенциалами двух обратимых систем. Другие методы следующие. Некоторые вещества, которые не дают истинного потенциала, могут титроваться обратимым окислителем. Например, КзРе(СМ)а применяется для титрования восстановленной формы аскорбиновой кислоты. Аскорбиновая кислота окисляется, а железо-оинеродистый калий восстанавливается. Измеряемый потенциал определяется системой Ре(СН) /Ре(СЫ) , но если прошло достаточно времени для достижения равновесия, то этот потенциал должен равняться потенциалу системы аскорбиновой кислоты и будет оставаться даковым, пока вся восстановленная аскорбиновая кислота не окислится. [c.179]

    Несколько позже Рид и Дюфреноа (1942) детально изучили фенольные агрегаты, накапливающиеся в вакуолях при недостатке цинка. Оказалось, что они представляют не только скопление фенолов, но и являются центрами активной полифенолоксидазы, способной окислять эти соединения. В нормальных условиях в присутствии цинка, как полагают авторы, окисление фенолов ферментом не происходит, благодаря присутствию постоянных доноров водорода (аскорбиновой кислоты, цистеина, глутатиона). При недостатке цинка окислительно-восстановительное равновесие сдвигается и наступает коацервация и окисление, как прямое следствие нарушений в питании и связанного с этим необычного активирования полифенолоксидазы. [c.139]


Смотреть страницы где упоминается термин Окислительно-восстановительное равновесие аскорбиновой кислоты: [c.521]    [c.213]   
Витамин С Химия и биохимия (1999) -- [ c.145 ]




ПОИСК





Смотрите так же термины и статьи:

Аскорбиновая кислота

Кислота равновесия

Окислительно-восстановительные равновесия



© 2024 chem21.info Реклама на сайте