Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иодид калия, восстановитель MoV

    Восстановителем и окислителем могут являться разные атомы одного и того же элемента, входящие в состав разных веществ. Например, реакция между иодидом калия и иодатом калия, протекающая в кислой среде  [c.161]

    Иодометрию широко применяют для определения окислителей перманганатов, бихроматов, иодатов, броматов, хлора, брома и других, а также для определения восстановителей сульфидов, сульфитов, тиосульфатов, органических веществ. С помощью иодометрии возможно определение кислот. Метод основан на том, что реакция окисления иодидов иодатами происходит в кислой среде. Количество выделившегося иода при этом эквивалентно содержанию кислоты в растворе. Косвенно иодометрический метод анализа применяют также при определении ионов бария и свинца, осаждая их в виде хроматов с дальнейшим восстановлением хроматов иодидом калия. [c.38]


    Опыт 3. Сравнение окислительно-восстановительных потенциалов реагирующих веществ. В две пробирки налить по 4—5 капель раствора нитрита натрия. Подкислить 2—3 каплями разбавленной серной кислоты. В одну пробирку добавить 1—2 капли раствора иодида калия, в другую—1—2 капли раствора бихромата калия. Записать наблюдения. Составить электронные уравнения, указать потенциалы окислителя и восстановителя, закончить схемы реакций  [c.131]

    Иодометрия — метод объемного анализа, в котором основным веществом является элементарный иод. При прямом титровании пд объему израсходованного титрованного раствора иода можно определить количество восстановителя. При косвенном методе окислитель заставляют прореагировать с избытком иодида калия, а выделившийся в эквивалентном количестве иод титруют тиосульфатом натрия. Точку эквивалентности определяют с помощью индикатора-крахмала. [c.207]

    В качестве восстановителей в реакции обнаружения фосфатов молибдатом аммония капельным методом обычно применяют хлорид двухвалентного олова [42], аскорбиновую кислоту [739], иодид калия [678]. [c.22]

    К первой группе в рамках этой классификации относят анионы-окислители, окисляющие иодид-ионы Г в сернокислой среде до молекулярного иода I2. В табл. 16.2 таких анионов — четыре бромат-анион BrOj, арсенат-анион AsO , нитрат-анион N0, (хотя этот анион в слабо кислой среде практически не реапфует с иодид-ионами) и нитрит-анион NO . Последний анион иногда относят ко второй группе анионои-восстановителей, поскольку, в зависимости от условий, нитрит-анион может реагировать и как окислитель, и как восстановитель. Групповым реагентом на анионы-окислители первой группы является водный раствор иодида калия KI в сернокислой среде. [c.421]

    Приведенные положения можно проиллюстрировать на опыте, схема которого показана на рис. 79. Здесь в стакан / налит раствор хлорида железа (1П) —РеСЬ, а в стакан 3 — раствор иодида калия KI. Растворы соединены между собой так называемым электролитическим ключом 2—U-образной трубкой, заполненной раствором хлорида калия КС1, обеспечивающим ионную проводимость. В растворы опущены платиновые электроды 4. Если теперь замкнуть цепь, включив в нее чувствительный вольтметр 5, то по отклонению стрелки можно наблюдать не только сам факт прохождения электрического тока, но и его направление. Электроны перемещаются от восстановителя (ионов 1 ) к окислителю (ионам РеЗ+) или, иными словами, от сосуда с раствором иодида калия к сосуду с раствором хлорида железа (П1). При этом ионы I- окисляются до молекул иода Ь, а ионы Ре + восстанавливаются до ионов железа (И) Ре +. Через некоторое время продукты реакций можно обнаружить анализом иод — раствором крахмала, а ионы [c.147]


    Описанный метод применен для выделения мышьяка при его определении в рудах и продуктах из переработки [268, 269]. Для восстановления мышьяка(У) до мышьяка(1П) могут использоваться и другие восстановители, в том числе сульфит натрия, иодид калия, аскорбиновая кислота, хлорид олова(П) и др. [c.124]

    При окислении степень окисления атомов увеличивается. Вещества, которые в ходе химической реакции отдают электроны, называются восстановителями. В приведенных выше примерах сера S°, металлический цинк Zn и иодид калия или иод в степени окисления —1 являются восстановителями. Таким образом, в ходе реакций восстановители окисляются. [c.60]

    Плутоний из органической фазы может быть реэкстрагирован в слабокислый раствор, содержащий восстановитель. В качестве восстановителей используют солянокислый гидроксиламин, хлорид олова (II), хлорид железа (II) и иодид калия [556, 561, 203]. Однако все эти реагенты медленно восстанавливают плутоний до трехвалентного. Быстрая реэкстракция плутония достигается при помощи 8—10 М растворов азотной [556, 561] или хлорной кислот [628]. [c.334]

    В последнее время в ряде работ [655, 798, 1042] в качестве эффективного восстановителя для быстрого переведения всего мышьяка в арсин рекомендован борогидрид натрия, который также быстро восстанавливает мышьяк до арсина, как и таблетки из цинковой пудры в присутствии иодида калия и хлорида олова(П). Преимуществом борогидрида натрия является незначительный уровень холостого опыта с его применением, чего нельзя достигнуть при использовании металлического цинка или цинковой пудры хлорида олова(И), которые всегда содержат следовые количества мышьяка. [c.105]

    Выделение N0 позволяет сделать вывод о том, что окислитель — разбавленная азотная кислота. Восстановитель — иодид калия  [c.134]

    Решение. 1) Можно воспользоваться окислительно-восстановительными свойствами галогенид-ионов иодид калия — сильный восстановитель и окисляется до иода под действием хлора  [c.168]

    При иодометрическом определении окислителей поступают иначе. К исследуемому раствору прибавляют избыток иодида калия, из которого окислитель выделяет строго эквивалентное количество свободного иода. Последний оттитровывают раствором восстановителя в присутствии крахмала и вычисляют содержание окислителя- [c.313]

    Иодометрически можно определять как восстановители, так и окислители. Из восстановителей иодометрически чаще всего определяют сульфиды, сульфиты, арсениты, нитриты, ртуть (I), сурьму (И1), цианиды, роданиды, олово (И), из окислителей — перекись водорода и другие перекиси, медь (И), железо (П1), двуокись марганца, гек-сацианоферрнат-ион 1Ре(СЫ)б , галогены (свободные), хлораты, броматы, иодаты, хроматы, перманганаты, арсенаты, гипохлориты. Все они выделяют из раствора иодида калия свободной иод, который можно оттитровать тиосульфатом натрия. [c.405]

    Определение мышьяка. Для быстрого и полного восстановления пятивалентного и трехвалентного мышьяка до арсина в качестве восстановителя используют совместно иодид калия, хлорид олова и металлический цинк. При этом реакция восстановления длится при комнатной температуре всего 90 с. Кроме того, снил ается оптимальная кислотность раствора. Для определения мышьяка в стоках речной и морской воды при концентрации на уровне нг/мл вводят в реакционный сосуд гидридного генератора примерно 20 мл раствора, содерл ащего не более 1 мг мышьяка, 2 мл 12 н. хлороводородной кислоты, 1 мл 40%-ного раствора иодида калия и 2 мл 10%-ного раствора хлорида олова. После перемешивания к раствору добавляют два кусочка по 0,5 г таблетированного порошка цинка, реакционный сосуд быстро присоединяют к баллону-сборнику и включают магнитную мешалку. После 90 с накопившийся в сборнике ар-син вытесняют током аргона в аргон-водородное пламя и измеряют атомное поглощение линии Аз 193,7 нм. Характеристическая концентрация составляет 0,7 нг/мл, воспроизводимость результатов анализа 2,6% нри концентрации 5 нг/мл. Градуировочные графики линейны до концентрации 5 нг/мл. Допустимое содержание сопутствующих злементов 7 >мкг селена 150 мкг свинца 220 мкг сурьмы 200 мкг серы. Другие компоненты не мешают при содержании не более 5 мг каждого [336]. [c.241]

    Запись данных опыта. Написать уравнение реакции взаимодействия феррицианида калия с иодидом калия, учитывая, что Кз[Ре(СК)б] переходит при этом в K4[Fe( N)6]. (Соляную кислоту в уравнение реакции не вводить.) Указать окислитель и восстановитель. .1 [c.113]

    Опыт 2. Сравнение восстановительной активности. В одну пробирку налить 5—6 капель раствора бромида калия, в )1ругую — столько же иодида калия. Добавить по 2—3 капли раствора хлорида железа (III). В каком случае наблюдаются видимые признаки химического взаимодействия Внести в каждую пробирку 3—4 капли бензола и сильно встряхнуть. В одной из пробирок органический растворитель окрашивается выделившимся свободным галогеном. Сделать вывод какой ион — Вг или 4- — более активный восстановитель. Составить уравнения реакций. [c.86]


    Молибден (V) образует с роданидами окрашенные соедйНёнйя, сб- tae которых зависит от кислотности среды и концентрации роданида. Соединения молибдена (VI) восстанавливают до пятивалентного сбстйя-ния хлоридом олова (П), иодидом калия, аскорбиновой кислотой, тио-мочевиной в присутствии солей меди (II) и другими восстановителями. Наиболее надежные результаты получаются при использовании последних трех восстановителей. На процесс восстановления молибдена (VI) сильно влияет кислотность раствора. [c.379]

    Перекиси — нелетучие, крайне взрывчатые вещества. Если перегонять долго стоявший эфир, то перекись постепенно накапливается в перегонной колбе и может быть причиной взрыва. Обнаружить присутствие перекисей в эфире можно встряхиванием с раствором иодида калия выделение иода (появление желтой окраски или синее окрашивание иодокрахмальной бумажки) укажет на присутствие перекисей. Такой эфир перед перегонкой необходимо очистить от перекисей встряхиванием с подходящим восстановителем (чаще всего используют концентрированный водный раствор сульфата железа Ее504). [c.168]

    Известно, что гальванический элемент работает при условии, когда разно ть потенциалов является положительной величиной. Окислительно-восстановительная реакция может протекать в выбранном направлении при том же условии, т. е. если разность окислительно-восстановительных потенциалов имеет полож1ительное значение, и, следовательно, э. д. с. положительна. Так, например, пусть требуется определить, в какую сторону пойдет реакция между диоксидом свинца (РЬОа) и иодидом калия ) в кислой среде, если концентрация веществ равна 1 г-ион/л. По таблице окислительно-восстановительных потенциалов находим стандартные потенциалы ЕдЛ г/21 =0,54 в и Ео РЬ02/РЬ -+- =1,68 в. Поскольку второй потенциал больше первого, окислителем будет диоксид свинца, а восстановителем иодид ионы Л э. д. с.= 1,68—0,54=1,14 в. Значит, реакция возможна, т. е. 3. д. с. является положительной величиной. [c.34]

    Если замкнуть цепь, включив в нее гальванометр, то по отклонению стрелки можно установить наличие электрического тока. Электроны перемещаются от сосуда с раствором иодида калия к сосуду с раствором хлорида железа (HI), т. е. от восстановителя (ионов 1 ) к окислителю (ионам 1- е +). Прн этом ионы 1 окисляются до молекул иода Т , а ионы восстанавливаются до ионов Fe-" . Через некоторое время продукты реакции можно обнаружить анализом иод — раствором крахмала, а ионы Fe- — раствором гексацианос )еррата (HI) калия (красная кровяная соль) K3[Fe( N)r,]. В стакане 1 находятся ионы 1 и молекулы 1з, в стакане 3 — ионы Fe + и Fe +. [c.210]

    Процессы окнсления и восстановления можно физически отделить друг от друга и осуществить перенос электронов по внешней электрической цепи. Пусть в стакан 2 налит раствор иодида калия KI (рис. 7.1), а в стакан 4—раствор хлорида железа (1П)РеС1з. Растворы соединены между собой так называемым электролитическим ключом 3 — U-образной трубкой, заполненной раствором хлорида калия КС1, обеспечивающим ионпую проводимость. В растворы опущены платиновые электроды 1 и 5. Если замкнуть цепь, включив в нее чувствительный амперметр, то по отклонению стрелки можно будет наблюдать прохождение электрического тока и его направление. Электроны перемещаются от электрода с раствором иодида калия к электроду с раствором хлорида железа (1И), т. е. от восстановителя — ионов 1 —к окислителю — ионам Fe +-. При этом ионы I окисляются до молекул иода 1г, а ионы Fe + восстанавливаются до ионов железа (II) j. g2+ Через некоторое время продукты реакций можно обнаружить характерными реакциями иод — раствором крахмала, а ионы Fe + — раствором гексациано-(П)феррата калия (красной кровяной соли) Кз[Ре ( N)J. [c.142]

    Если теперь замкнуть цепь, включив в нее чувствительный вольтметр 5, то по отклонению стрелки можно будет наблюдать не только сам факт прохождения электрического тока, но и его направление. Электроны перемещаются от сосуда с раствором иодида калия к сосуду с раствором хлорида трехвалентного железа, т. е. от восстановителя — ионов I к окислителю — ионам Ре . При этом ионы 1 окисляются до молекул иода 1г, а ионы Ее + восстанавливаются до ионов двухвалентного железа Ре . Через некоторое время продукты реакции можно обнаружить анализом иод — раствором крахмала, а ионы Ре — раствором гек-сациано-(П1)феррата калия (красной кровяной соли) Кз[Ре(СМ),1. [c.89]

    К раствору КТсО< в небольшом количестве теплой концентрированной соляной кислоты прибавляют избыток восстановителя — измельченного в порошок иодида калия. После медлеииого упаривания коричневый остаток снова обрабатывают концентрированной соляной кислотой полученный раствор нагревают до прекращения выделения паров иода. Полноту восстановления KT O4 определяют, прибавляя небольшое количество иодида калия. Нагревание остатка с концентрированной соляной кислотой следует повторять до тех пор, пока при испарении раствора не будут осаждаться только желтые (без примеси коричневых) кристаллы. KsLT U] можно отмыть от примеси хлорида калия с помощью смеси соляной кислоты и метаиола и перекристаллизовать из концентрированной соляной кислоты. Выход 70%. [c.1705]

    Для повышения устойчивости и воспроизводимости окраски растворов и увеличения надежности результатов определения молибдена вместо ЗпСЬ были рекомендованы различные восстановители тиомочевина [133], иодид калия в присутствии сульфита [96, 829], аскорбиновая кислота [183, 219, 1543], ацетон [183], сульфат гидразина [758, 1037], хлорид трехвалентного титана [325], соль Мора в присутствии пирофосфата [90] и другие вещества. [c.22]

    При сравнительном изучении Sn b, иодида калия в присутствии сульфита натрия, тиомочевины и аскорбиновой кислоты как восстановителей шестивалентного молибдена [32а, 219] при его фотометрическом определении выяснялось влияние концентрации НС1 и H2SO4, а также избытка восстановителя на окраску роданидных соединений. Было установлено, что окраска соединений в сернокислой среде более устойчива, чем в соляно-22 [c.22]

    Шестивалентный молибден в сильносолянокислом растворе восстанавливается ионами иода до пятивалентного состояния [825, 1050]. Молибденовая кис./70та в слабокислых растворах восстанавливается ионами иода до молибденовой сини [957] восстановление ускоряется в присутствии фосфорной, кремне-,, вой и германиевой кислот. Шестивалентный молибден практически не восстанавливается при рН 0,1 [315, 316]. На реакции восстановления ионами иода основано несколько вариантов титриметрического определения шестивалентного молибдена [587, 705—707, 746—748]. В настоящее время эти методы не имеют практического значения . Иодид калия применяется как восстановитель в некоторых вариантах роданидного фотометрического метода определения молибдена (см. стр. 209). [c.94]

    Указанная реакция в кислой среде проходит количественно. Выделяющийся иод оттитровывают раствором тиосульфата, титр которого устанавливают. Так как титр стандартного раствора тиосульфата изменяется со временем, то его периодически следует проверять по бихромату калия. Помимо бихромата для установки титра тиосульфата в качестве установочных веществ применяют также иод, иодат калия KJO3, бииодат калия КН(ЛОз)2, бромат калия КВгОз, гексацианоферрат (И I) калия, персульфат калия КгЗзОд и стандартный раствор перманганата, установленный гю какому-нибудь восстановителю. (Напишите уравнения реакции взаимодействия указанных веществ с иодидом калия.) [c.212]

    При фотометрическом определении молибдена в форме роданидных соединений в качестве восстановителя был успешно применен иодид калия (взятый в избытке) при добавлении сульфита натрия, что позволило избежать восстановления молибдена до валентности ниже пяти [96]. Окраска получаемых растворов более устойчива и развивается быстрее, чем при использовании Sn b, чувствительность метода сохраняется прежней. Растворы подчиняются закону Бера в интервале 0,2—20 мг1мл Мо. Оптимальная оптическая плотность растворов роданидных соединений молибдена наблюдается при концентрации иодида калия, равной 1%, и не изменяется в случае дальнейшего увеличения его концентрации до 3—4% [96]. Оптическая плотность сохраняется без изменения в течение нескольких часов. Необходимая концентрация иодида калия зависит от количества присутствующего трехвалентного железа. Стократные количества железа не мешают восстановлению молибдена иодидом калия. [c.209]

    Разработан быстрый и чувствительный метод фотометрического определения небольших количеств молибдена в шеелито-вых рудах н концентратах [829], основанный на использовании иодида калия как восстановителя. Для удаления элементарного мода применяют сульфит (наггрия. Концентрация соляной кислоты должна быть 2 М. Если присутствуют большие количества вольфрама, то его удерживают в растворе добавлением цитрата аммония. Анализируемый материал переводят в растворимое состояние сплавлением с NaOH. [c.212]

    Иодометрическое определение ртути в солях Hg(II). Чаще всего восстанавливают соли Hg(II) до металлической ртути в щелочных растворах соответствующими восстановителями, которые не должны реагировать с иодом. Затем прибавляют раствор иода в присутствии иодида калия для перевода металлической ртути в HgJ4 . Избыток иода оттитровывают тиосульфатом в присутствии крахмала. Восстановителями могут быть формальдегид или перекись водорода [755, стр. 398]. В работе [684] показано, что быстрое растворение ртути происходит тогда, когда в растворе присутствует желатин, действующий как защитный коллоид. Можно использовать и восстановители, которые реагируют с раствором иода, по при этом полученную металлическую ртуть необходимо отделить от раствора фильтрованием или декантацией. Далее ртуть можно определить иодометрически. Для восстаповления ртути и ее соединений можно использовать отмеренные количества восстановителей, избыток которых затем оттитровывают также иодометрически. [c.88]

    Эти методы характеризуются очень высокой чувствительностью и позволяют определять нанограммовые количества мышьяка. Несмотря на то что в первых работах с применением металлического цинка в качестве восстановителя выход мышьяка в виде арсина составлял всего коло 20% [878], эти методы быстро находили практическое применение [1092] и совершенствовались [579, 655, 748, 798, 1042, 1205]. Для ускорения анализа вместо гранулированного ципка предложено применять таблетки цинковой пудры совместно с иодидом калия и хлоридом олова(П) [1205]. Замена гранулированного ципка таблетками цинковой пудры дозволяет избежать бурного восстановления в начальный момент , а добавление иодида калия и хлорида олова(П) обе сне- [c.104]

    В косвенных методах бромат-ионы восстанавливают ферроциа-нидом калия [466], этилендиаминтетраацетатом Fe(II) [844, 845] или иодидом калия [599, 841]. В первом случае титруют образовавшийся феррицианид раствором аскорбиновой кислоты, в последу-юш их определяют избыток восстановителя титрованием растворами КМПО4 [844, 845], хлорамина Б [841] и Hg(N0a)2 [599]. ТЭ, как правило, индицируют по скачку потенциала Pt-электрода и только в работе [599] используют электрод из амальгамированного серебра. Все перечисленные методы неспецифичны и рассчитаны на определение ряда окислителей, но по показателям правильности и чувствительности наилучшей оценки заслуживают методы [466, 841], являющиеся к тому же очень простыми. В качестве примера приведем описание методики согласно [466]. [c.130]

    Значительно большее распространение получили косвенные определения по методу окисления-восстановления. Аскорбиновая кислота [556], ( -сорбоза, ( -галактоза, ( -фруктоза, d-глюкоза и формальдегид [944] восстанавливают при определенных условиях ионы серебра до металла. Осадок металлического серебра отделяют, растворяют в избытке Ге2(304)з(КН4)2304 и 4 7V Н2ЗО4 и титруют ионы железа(П), количество которого эквивалентно содержанию серебра в анализируемом растворе, стандартными растворами Се(304)2 или бихромата калия -в присутствии N-фенил-антраниловой кислоты [944]. При восстановлении /-аскорбиновой кислотой образуется дегидро-/-аскорбиновая кислота избыток восстановителя титруют раствором N-бромсукцинимида в присутствии иодида калия и крахмала [556]. [c.82]

    Открытие оскмя путем активирования раств ора хлората. Хлораты щелочных металлов обладают весьма малой окисляющей способностью в нейтральном илн слабокислом растворе, но, в присутствии даже следов четырехокиси осмия (а также гидроокиси рутения) растворы хлоратов активируются, приобретая способность легко восстанавливаться до хлорида в присутствии какого-либо восстановителя. Так, например, хлорат выделяет иод из иодида калия в присутствии следов четырехокиси осмия. Нужно, однако, считаться с тем, что сама четырехокись осмия действует окисляющим образом а раствор иодида, ио это только при больших количествах ее. Поэтому при реакции на осмий следует настолько разбавить раствор его, чтобы реакция между ним и иодидом не происходила. [c.575]

    Для определения олова в самых различных продуктах широко используются объемкые методы, основакны.е па реакции восстановления олова до двухвалентного состояния с иоеледуюш,им окислением его стандартным раствором иода плп смесью иодата и иодида калия. Лучше применять для окисления иодатно-иодидные растворы, так как растворы иода менее стабильны и легче окисляются воздухом. Были опробованы и рекомендованы различные восстановители, в том числе железо , никель , алюминий и гипосульфит натрия [c.96]

    Иодид калия ( = + 0,53 в для системы + 2е = = 3J") служит прекрасным восстановителем для определения церия в не слишком кислых средах [1324, 20411, причем конечная точка титрования определяется либо с индикатором, либо потен-циометрически. Для титрования в 0,9—2,7 N H2SO4 в присутствии ацетона, связывающего выделяющийся иод, точность результатов выдерживается в пределах 0,1%. Однако при прямых титрованиях не всегда имеет место необходимая воспроизводимость метод чувствителен не только к кислотности, но и к исходной концентрации церия. Поэтому поздние модификации этого способа основаны на определении иода, выделяющегося при добавлении избытка иодида калия. Это осуществляется титрованием либо с арсенитом [1729, 20061, либо с тиосульфатом [1651] в растворе с pH 4—5, которое регулируется добавлением какой-либо буферной смеси. Прибавление комплексона непосредственно перед тит- [c.157]

    Иодометри.ческие методы основаны на применении стандартного раствора тиосульфата натрия для титрования иода, выделившегося при взаимодействии определяемого окислителя с избытком иодида калия (при титровании по замещению) или оставшегося в избытке при медленном взаимодействии определяемого восстановителя с фиксированным объемом стандартного раствора иода (в случае обратного титрования). [c.309]

    Располагая стандартизированным раствором перманганата калия, можно принять следующий порядок работ. Сначала готовят раствор тиосульфата натрия и устанавливают нормальную концентрацию титрованием иода, выделенного из раствора иодида калия определенным объемом раствора перманганата калия. Затем готовят раствор иода и устанавливают нормальную концентрацию его по КааЗгОд. Имея оба рабочих раствора, определяют количество какого-либо восстановителя. [c.315]

    В качестве восстановителя применяется хлорид олова (II), а также аскорбиновая кислота, тиомочевина, иодид калия и др. Большой избыток 5пС12 вреден, так как может произойти восстановление молибдена до низших валентных форм с образованием слабо окрашенных роданидных комплексов. В большинстве случаев определение молибдена приходится выполнять в присутствии железа, роданид которого разрушается от прибавления ЗпСЬ вследствие восстановления железа до двухвалентного. При наличии ионов Ре " значительная часть 5пС12 затрачивается на восстановление железа и в растворе образуется соответствующее коли- [c.135]


Смотреть страницы где упоминается термин Иодид калия, восстановитель MoV: [c.198]    [c.44]    [c.241]    [c.448]    [c.23]    [c.91]    [c.139]   
Аналитическая химия молибдена (1962) -- [ c.22 , c.23 , c.93 , c.94 , c.166 , c.209 , c.210 , c.212 ]

Аналитическая химия молибдена (1962) -- [ c.22 , c.23 , c.93 , c.94 , c.166 , c.209 , c.210 , c.212 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановитель

Иодиды

Калий восстановитель

Калия иодид



© 2025 chem21.info Реклама на сайте