Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трансляция II также Белки, синтез

    Количество определенного фермента в клетке может регулироваться на нескольких уровнях на этапе транскрипции, трансляции, а также в процессе сборки и разрушения ферментного белка (см. рис. 28). В иерархии регуляторных воздействий наиболее сложный механизм, контролирующий количество ферментов в клетке, связан с процессом транскрипции. Специфические химические сигналы могут инициировать или блокировать транскрипцию определенного участка ДНК в иРНК. В случае индукции образованная иРНК участвует в определенной последовательности реакций, называемой трансляцией и заканчивающейся синтезом полипеп-тидных цепей. Регуляция белкового синтеза на уровне трансляции может осуществляться на любом из ее этапов, например на этапе инициации, элонгации и др. Не исключена также возможность изменения времени жизни иРНК под воздействием разных эффекторов, в том числе конечных продуктов метаболических путей. Хотя механизмы регуляции синтеза белка на уровне трансляции еще точно не установлены, ясно, что на этом этапе имеются широкие возможности для регуляции скорости синтеза различных белков. [c.117]


    Противоопухолевые препараты могут также нарушать синтез компонентов белоксинтезирующей системы. Нарушение синтеза РНК, рибосомных белков, белковых факторов трансляции (одного или нескольких) неизбежно приведет к изменению функционирования белоксинтезирующей системы. Дефицит компонентов белоксинтезирующей системы при подавлении их синтеза будет проявляться прямо пропорционально времени жизни того или иного компонента, поэтому повреждающее влияние препаратов в этом случае, вероятно, правильнее всего определять в экспериментах с длительной экспозицией [c.287]

    ЭТОМ образуются специфич. пары комплементарных оснований, имеющие почти одинаковые размеры. Поэтому двойная спираль имеет очень однородную регулярную структуру, мало зависящую от конкретной последовательности оснований-св-во очень важное для обеспечения универсальности механизмов репликации (самовоспроизведение ДНК или РНК), транскрипции (синтез РНК на ДНК-матрице) и трансляции (синтез белков на РНК-матрице). В каждом из этих т. н. матричных процессов К. играет определяющую роль. Напр., при трансляции важное значение имеет К. между тройкой оснований матричной РНК (т. и. кодоном, см. Генетический код] и тройкой оснований транспортной РНК (поставляют во время трансляции аминокислоты). К. определяет также вторичную структуру нуклеиновых к-т. Одноцепочечные РНК благодаря К. оснований, навиваясь Сами на себя, образуют относительно короткие двухспиральные области ( шпильки и петли ), соединенные одноцепочечными участками, К. в отдельных парах оснований ДНК может нарушаться из-за появления отклонений в их строении, к-рые могут возникать спонтанно или в результате действия разл. факторов (химических и физических). Следствием этих изменений м. б. мутации. [c.443]

    Более того, хотя синтез мембранных и секреторных белков происходит на мембраносвязанных рибосомах, инициация их трансляции совершается на свободных частицах нативные 40S частицы, начинающие инициацию, всегда свободны, и образующиеся в результате инициации 80S частицы также еще не прикреплены к мембранам. Присоедине- [c.277]

    Полиамины, к которым относят также диамин путресцин, играют важную роль в процессах клеточного роста и дифференцировки, в регуляции синтеза ДНК, РНК и белка, стимулируя транскрипцию и трансляцию (см. далее), хотя конкретный механизм участия их в указанных процессах не всегда ясен. [c.446]

    Многоступенчатый матричный синтез белка, или собственно трансляцию, протекающую в рибосоме, также условно делят на 3 стадии инициацию, элонгацию и терминацию. [c.524]

    К лекарственным веществам, эффективно влияющим на синтез белка, относятся антибиотики. Как правило, они ингибируют процессы транскрипции и трансляции. Так, противоопухолевые антибиотики — актиномицин О, рубо-мицин с, оливомицин, митомицин с — блокируют транскриптон или ингибируют РНК-полимеразу. (Кстати, многие противоопухолевые препараты иной природы также подавляют синтез белка, например фторурацил.) Большинство антибиотиков противобактериального действия ингибируют процессы трансляции. [c.475]


    Онтогенетические реакции, такие как инициация цветения, прорастание семян и деэтиоляция, несомненно, связаны с радикальными сдвигами в химизме, структуре и функции растительных клеток. Эти сдвиги в свою очередь зависят от изменения активности многих ферментов, а также от синтеза новых ферментов. Так как ферменты представляют собой белки и их синтез определяется процессами трансляции и транскрипции, состояние фи- тохрома должно влиять или на ка-кой-то один из этих процессов, или на оба. Мы не знаем, как фитохром осуществляет это влияние. Он мог бы связываться с ядерным хроматином, оказывая таким образом прямое воздействие на синтез РНК и белка его влияние могло бы быть и более тонким, возможно, связанным с изменениями в компартментации ионов внутри клетки и как следствие — в ч интезе белка. Однако контроль белкового синтеза — не единственный способ действия фитохрома, так как многие регулируемые фитохромом процессы не зависят от синтеза белка и осуществляются слишком быстро. [c.352]

    Дифференциальная трансляция, т. е. синтез белка только на определенных иРНК или регуляция синтеза белка на одной и той же иРНК, показана для РНК-содержащих бактериофагов Е. соИ, а также при синтезе глобинов на стабильных иРНК безъядерных ретикулоцитов млекопитающих. В последнем случае показано, что избыток гемина стимулирует синтез глобина. Гемин инактивирует белок, который репрессирует, т. е. запрещает синтез а- и 6-цепей глобина. На этой же модели показано, что некоторые фракции тРНК играют роль модуляторов, задающих темп трансляции. тРНК-мо-дуляторы служат лимитирующим фактором в трансляции, узнавая какой-либо уникальный кодон иРНК. Гипотеза модулятора была предложена в начале 60-х годов Г. Стентом. [c.414]

    Инсулин влияет также на синтез белков, изменяя, по-видимому, скорость трансляции. После инкубации с инсулином в клетках происходит фосфорилирование рибосомального белка 65 с молекулярным весом 31 ООО. Фосфорилирование этого белка достигает максимума уже спустя 5 мин после инкубации клеток с инсулином. Этот процесс коррелирует с ускорением транспорта глюкозы, однако весьма вероятно, что он имеет отношение и к белковому синтезу. Фосфорилирование рибосомального белка подавляется антителами на инсулин, но ускоряется антителами на инсулиновый рецептор. Циклические нуклеотиды и a не имитируют этого эффекта. В то же время, экстракт из клеток,, преинкубированных с инсулином, также вызывает фосфорилирование белка 65. Возможно, при связывании инсулина с рецептором в клетке образуются неизвестные пока посредники ( вторичные мессенджеры ). Существует предположение, что под действием инсулина от рецептора отщепляется фрагмент (короткий пептид), который покидает плазматическую мембрану, проникает в цитоплазму и осуществляет свое регуляторное влияние на внутриклеточные структуры. Нельзя исключить и того, что инсулин вызывает выход протеинкиназы из мембраны и последующее взаимодействие с рибосомой. [c.172]

    Л.1. Интерферон а (IFN-a) продуцируется лейкоцитами в ответ на контакт с индукторами интерферона — интерфероноге-нами вирусами, компонентами и продуктами бактерий (ЛПС), полинуклеотидами, опухолевыми клетками и др. Среди клеток, ответственных за синтез IFN-a, наряду с макрофагами фигурируют Т- и В-лимфоциты и естественные киллеры. Рецепторы для IFN-a экспрессированы на подавляющем большинстве клеток организма, включая и иммунокомпетентные клетки. IFN-a через свой специфический рецептор модулирует экспрессию генов клетки-мишени, что ведет к синтезу различных белков. Эти индуцированные интерфероном белки могут опосредовать различные эффекты ингибицию репликации вирусов, супрессию клеточной пролиферации и экспрессии онкогенов, нарушение клеточной дифференцировки или иммунорегуляцию. Идентифицировано более 25 разных индуцированных IFN-a белков, участвующих в его противовирусном действии, среди которых главную роль отводят группе ферментов и белков, которые обеспечивают ингибицию транскрипции вирусного генома и трансляции вирусспецифических белков. Индуцированные IFN-a белки оказывают выраженное иммуномодулирующее действие на сами макрофаги, на ЕК, на Т- и В-лимфоциты, на стволовые клетки костного мозга. Наиболее подробно изучена способность IFN-a регулировать экспрессию поверхностных антигенов и рецепторов на разных клетках организма. IFN-a повышает экспрессию антигенов гистосовместимости — HLA I класса, F yR, Т-клеточных антигенов и рецепторов, а также других молекул. [c.185]

    Синтез. Биосинтез Б. происходит в результате трансляции в субклеточных частицах-рибосолшх, представляющих собой сложный рибо-нуклеопротеидный комплекс. Информация о первичной структуре Б. хранится в соответствующих генах-участках ДНК-в виде последовательности нуклеотидоа В процессе транскрипции эта информация с помощью фермента-ДНК-зависимой РНК-полимеразы - передается на матричную рибонуклеиновую к-ту, к-рая, соединяясь с рибосомой, служит матрицей для синтеза Б. Выходящие из рибосомы синтезированные полипептидные цепи, самопроизвольно сворачиваясь, принимают присущую данному Б. конформацию, а также подвергаются модификации благодаря р-циям разл. функциональных групп аминокислотных остатков и расщеплению пептидных связей (см. Модификация белков). [c.253]


    По-видимому, стабилизация двуспирального участка с участием инициаторного триплета либо за счет третичной структуры РНК, либо в результате специфического присоединения РНК-связьшающего белка, может полностью блокировать инициацию в данном участке. Так, очень похоже, что в MS2 РНК, а также в РНК родственных фагов R17, Г2 и др. третичной структурой заблокированы инициаторные триплеты как А-цистрона, так и S-цистрона. Инициация на А-цистроне происходит, вероятно, лишь в процессе синтеза РНК, когда полная пространственная структура еще не сформирована. Инициация на S-цистроне имеет место в процессе трансляции предшествующего С-цистрона рибосомы, считывая С-цистрон, расплетают РНК, освобождая участок с инициаторным триплетом S-цистрона из какого-то более стабильно свернутого состояния. Когда появляются готовые молекулы белка оболочки фага, снова происходит выключение инициации S-цистрона белок оболочки фага имеет специфическое сродство к нестабильной спирали, содержащей инициаторный AUG триплет (рис. 11), и, связываясь с ним, стабилизирует спираль. [c.24]

    В соответствии с вышесказанным трансляция интактной MS2 РНК в бесклеточных системах, а также, по-видимому, и in vivo начинается с инициации синтеза белка оболочки. Трансляция С-цистрона приводит к тому, что рибосомы движутся вдоль него по направлению к S-цистрону и расплетают структуру РНК по мере своего продвижения. Это приводит к открыванию инициирующего района цистрона S. Таким образом, еще до окончания трансляции С-цистрона первой рибосомой и синтеза первой молекулы белка оболочки инициирующий район S-цистрона делается доступным, и происходит инициация синтеза субъединицы РНК-репликазы. [c.235]

    Заверщение трансляции С-цистрона первыми рибосомами приводит к тому, что в системе появляются свободные молекулы белка оболочки. По мере трансляции этот белок накапливается и в будущем будет вовлечен в самосборку готовых вирусных частиц. Однако он оказался обладающим также и другой функцией он имеет сильное специфическое сродство к определенному участку MS2 РНК между С- и S-цистронами, включающему инициирующий кодон S-цистрона. Соответственно, он присоединяется к этому участку и репрессирует инициацию трансляции S-цистрона. Вероятно, репрессия происходит вследствие стабилизации лабильной вторичной структуры, показанной на рис. 11, белком оболочки фага и получающейся отсюда недоступности инициирующего кодона S-цистрона. Следовательно, через сравнительно короткое время после того, как трансляция S-цистрона была разрешена трансляцией предшествующего цистрона, происходит репрессия инициации трансляции S-цистрона вследствие накопления белкового продукта трансляции предшествующего цистрона. В этих условиях рибосомы, уже начавшие трансляцию, продолжают ее и в конце концов заканчивают синтез соответствующего количества молекул субъединиц синтетазы. Ограниченного количества этого белка достаточно, чтобы образовать активные молекулы РНК-репликазы, которые начнут репликацию MS2 РНК. В то же время репрессия дальнейшего синтеза этого белка позволяет избежать ненужной суперпродукции фермента. Белок оболочки фага, являющийся репрессором S-цистрона, [c.235]

    Имеющиеся сведения сводятся в основном к двум группам фактов. Во-первых, известно много случаев, когда имеет место избирательная дискриминация мРНК как результат разной эффективности ( силы ) инициации благодаря каким-то (неизвестным) чертам структуры 5 -концевого и инициирующего района матриц. Сюда относятся, по-видимому, также случаи подавления трансляции хозяйских мРНК при одновременной высокоэффективной трансляции вирусных РНК в вирусинфи-цированных эукариотических клетках. Во-вторых, четко продемонстрирована возможность тотальной регуляции (подавления) синтеза белка в клетке за счет модификации ключевого фактора инициации —е Р-2. [c.257]

    Геминконтролируемая инициация трансляции в ретикулоцитах. Давно было известно, что синтез белка (главным образом, гемоглобина) в ретикулоцитах кролика и других млекопитающих, а также в лизатах ретику-лоцитов и ретикулоцитных бесклеточных системах требует присутствия гемина. В отсутствие гемина синтез белка быстро затухает. [c.259]

    Синтез белка представляет собой циклический энергозависимый многоступенчатый процесс, в котором свободные аминокислоты полимеризуются в генетически детерминированную последовательность с образованием полипептидов. Система белкового синтеза, точнее система трансляции, которая использует генетическую информацию, транскрибированную в мРНК, включает участие множества разнообразных молекул (низкомолекулярные вещества и макромолекулы, а также надмолекулярные структуры). В табл. 14.1 обобщены известные к настоящему времени данные [c.523]

    Широко применяемые в клинике тетрациклины также оказались ингибиторами синтеза белка в 70S рибосоме (меньше тормозится синтез в 80S рибосоме). Они легко проникают через клеточную мембрану. Считают, что тетрациклины тормозят связывание аминоацил-тРНК с аминоацильным центром в 50S рибосоме. Возможно, что тетрациклины химически связываются с этим центром, выключая тем самым одну из ведущих стадий процесса трансляции. [c.543]


Смотреть страницы где упоминается термин Трансляция II также Белки, синтез: [c.116]    [c.232]    [c.323]    [c.30]    [c.34]    [c.88]    [c.318]    [c.161]    [c.22]    [c.232]    [c.25]    [c.318]    [c.587]    [c.244]    [c.665]    [c.91]    [c.103]    [c.29]    [c.57]    [c.57]    [c.174]    [c.211]    [c.244]    [c.245]    [c.318]    [c.493]    [c.513]    [c.524]   
Биохимия Т.3 Изд.2 (1985) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Белки синтез II также Трансляция, Рибосомы



© 2024 chem21.info Реклама на сайте