Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трипсин расщепление пептидных связе

    Принцип метода. Под действием трипсина в белке или пептиде происходит расщепление пептидных связей, образованных остатками лизина и аргинина. [c.168]

    Специфичность. Трипсин специфически гидролизует пептидные связи по карбоксильной группе лизина и аргинина, т. е. типа -Lys-X- и -Arg-X-. Однако специфичность фермента не абсолютна, например фрагменты -Lys-Pro- и -Arg-Pro- устойчивы к действию трипсина. Присутствие кислотных остатков вблизи атакуемой связи приводит к резкому снижению скорости гидролиза, а в некоторых случаях полностью его исключает. Положительно заряженные группы также снижают скорость гидролиза. Например, если Arg и Lys находятся в ближайшем соседстве или расположены на N-конце полипептидной цепи, происходит лишь частичное расщепление пептидных связей. [c.147]


    Для специфического расщепления белков по определенным точкам применяются как ферментативные, так и химические методы. Из ферментов, катализирующих гидролиз белков по определенным точкам, наиболее широко используют трипсин и химотрипсин. Трипсин специфично катализирует гидролиз пептидных связей, расположенных после положительно заряженных аминокислотных остатков лизина и аргинина. Химотрипсин преимущественно расщепляет белки после остатков ароматических аминокислот — фенилаланина, тирозина и трипто- [c.269]

    Попытки использования оксиаминокислот более подробно описаны в следующем разделе. Как указывалось выше, расщепление аминокислот основного характера проводилось только при действии трипсина (см. стр. 179—198). Известны работы, посвященные селективному расщеплению пептидных связей в ароматических аминокислотах путем облучения белка светом соответствующей длины волны. В большинстве случаев исследования имели эмпирический характер и предпринимались главным образом с целью изменения свойств белков, часто обладающих ферментативными или иммунологи- [c.215]

    Химотрипсин гораздо менее специфичен, чем трипсин. Избирательное расщепление пептидных связей, в которых принимают участие карбоксильные группы ароматических аминокислот, происходит только при краткосрочном гидролизе. Длительный гидролиз приводит к разрушению и других пептидных связей, например образованных остатками лейцина, гистидина и глутамина. [c.169]

    Химотрипсиноген образован одной полипептидной цепью, состоящей из 245 аминокислот. Цепь связана пятью дисульфидными мостиками. Химотрипсиноген практически полностью лишен ферментативной активности. Однако он превращается в активный фермент, когда под действием трипсина расщепляется пептидная связь между аргинином-15 и изолейцином-16 (рис. 8.3). Образующийся активный фермент, называемый л-химотрипсином, действует затем на другие молекулы я-химо-трипсина, В результате удаления еще двух пептидов образуется стабильная форма фермента - а-химотрипсин. Дополнительное расщепление при превращении л-химо-трипсина в а-форму в сущности излишне, поскольку я-химотрипсин сам обладает полной ферментативной активностью. Поразительная особенность данного процесса [c.153]

    Подобного рода процедуры значительно расширяют возможности использования трипсина в качестве специфического реагента для расщепления пептидных связей, так как, подвергнув модифицированную полипептидную цепь ряду последовательных обработок трипсином, исследователь может получить перекрывающиеся пептиды. [c.90]


    Некоторые ферменты находятся в клетках и биологических жидкостях в неактивном или малоактивном состоянии. Такие ферменты получили название проферментов. Под действием определенных соединений они становятся активными — переходят в фермент. Механизмы такого превращения разнообразны. Часто профермент переходит в фермент при разрушении находящегося в нем ингибитора. Возможно превращение профермента в фермент в результате перестройки структуры и конформации его молекулы. Как известно, химотрипсин образуется в поджелудочной железе в виде каталитически неактивного химотрипсиногена. Это вещество превращается в активный химотрипсин лишь тогда, когда попадает в пищеварительный тракт животного. Происходит это под действием трипсина и заключается в гидролизе одной пептидной связи в первичной структуре фермента. Благодаря расщеплению пептидной связи полипептидная цепочка становится как бы менее стянутой, поэтому она расправляется и может принять ту третичную структуру, [c.13]

    Трипсин 21 расщепляет пептидные связи, в образовании которых участвуют карбоксильные группы лизина и аргинина. К гидролизу трипсином устойчивы связи лизина и аргинина с пролином (лиз—про и арг—про). Замедление гидролиза этим ферментом наблюдается тогда, когда остатки лизина и аргинина находятся рядом со свободными а-амино- и а-карбоксильными группами, а также в участках полипептидной цепи с повышенным содержанием основных аминокислот (связи ЛИЗ—лиз, арг—арг, лиз—арг и арг—лиз расщепляются только частично). Селективность расщепления трипсином можно повысить путем блокирования e-NH2-rpynn лизина (например, ангидридами янтарной, малеиновой или цитраконовой кислот) или же гуанидиновых группировок аргинина (дикетоновыми реагентами, такими как диацетил, циклогександион, фенилглиоксаль и др.). Гидролизу трипсином могут подвергаться связи, образованные и остатками цистеина, после превращения его в аминоэтилцистеин обработкой белка этиленимином. [c.140]

    Применительно к белкам с более высоким молекулярным весом существующие методы не позволяют полностью установить последовательность аминокислотных остатков, но делаются попытки свести проблему к выяснению природы активного центра молекулы. Например, папаин, содержащий 178 аминокислотных остатков, удается подвергнуть ферментативному расщеплению и удалить /з аминокислотных остатков при полном сохранении ферментной активности (в расчете на 1 моль) [148]. Установлено, что ферментная активность связана с сульфгидрильной группой, входящей в состав активного центра. Трипсин и химотрипсин приобретают ферментную активность при разрыве лишь одной пептидной связи в исходных неактивных молекулах [224, 225, 257]. [c.164]

    Иногда второго расщепления полипептида на фрагменты оказывается недостаточно, чтобы найти перекрывающиеся участки для двух или более пептидов, полученных после первого расщепления. В этом случае применяется третий, а то и четвертый способ расщепления, что позволяет в конце концов получить набор пептидов, обеспечивающих перекрывание всех участков, необходимых для установления полной последовательности исходной цепи. При этом для расщепления полипептида можно использовать другие протеолитические ферменты, например химотрипсин или пепсин правда, эти ферменты расщепляют пептидные связи гораздо менее избирательно, чем трипсин (табл. 6-6). [c.152]

    Ферментативное действие химотрипсина, как и других панкреатических протеаз (трипсина, эластазы), соответствует механизму общего кислотноосновного катализа, в котором принимают участие в качестве системы переноса заряда остатки аминокислот №5 , Авр и 8ег . Передача электронной плотности от заряженной при pH 8 отрицательно карбоксильной группы аспарагиновой кислоты через имидазольное кольцо гистидина к кислороду боковой цепи серина обусловливает повышение его иуклеофиль-ности настолько, что может осуществляться нуклеофильное воздействие на карбонильный углеродный атом пептидной связи. На промежуточно образующемся О-ацильном производном серина перенос заряда, обрывается, ио на последующей стадии деацилирования снова немедленно восстанавливается. Гидролитическое расщепление пептидной связи может быть рассмотрено как перенос ацила, при котором осуществляется перемещение ациль-иого остатка с аминогруппы на молекулу воды (рис. 3-31). [c.408]

    Трнпснноподобные сериновые протеазы [138, 536] образуют семейство расщепляющих белки ферментов, которые контролируют многие важнейшие физиологические процессы (табл. 9.4).Пищеварительный фермент трипсин, для которого и был впервые употреблен термин энзим (фермент), является наиболее изученным членом этого семейства. Он известен уже более ста лет, а его способность к расщеплению пептидных связей вблизи лизиновых и аргнннновых остатков очень сходна со свойствами большей части других белков из этого семейства. Однако большинство родственных трипсину ферментов намного более специфичны, чем сам трипсин каждый из них расщепляет в белке только одну или очень небольшое число пептидных связей. Структурная гомология сериновых протеаз была изучена и обобщена Хартли в 1970 г. [490]. Попарныесравнения трипсина,, эластазы, химотрипсина и тромбина показывают, что около 40% их аминокислотных последовательностей идентичны (58 РАМ). На сегодняшний день известны структуры первых трех из этих ферментов. Как и предсказывалось, все они имеют одинаковую укладку цепи [18, 243—245]. [c.216]


    Тиализильная пептидная связь, получающаяся в результате восстановления дисульфидных связей и 5-аминоэтилирования образовавшегося остатка цистеина, также расщепляется трипсином (см. разд. 23.3.3), так как ее боковая группа является изостериче-ской боковой группе Lys. Природа R имеет второстепенное значение, хотя связи Arg-Pro и Lys-Pro не разрываются. Известны и многие другие протеиназы, которые по своей специфичности напоминают трипсин. Например, известно, что тромбин разрывает участки Arg-Gly и Arg-Ser в фибриногене — одном из своих природных субстратов, однако для эффективного катализа необходима еще и связь фермента со вторым участком молекулы субстрата. Поэтому тромбин находит лишь ограниченное применение при расщеплении пептидных связей с целью изучения последовательности, хотя в случае секретина он разрывает связь Arg-Asp, в то время как три связи Arg-Leu остаются незатронутыми. Действие трипсина можно ограничить так, чтобы он разрывал либо по остаткам аргинина, либо по остаткам лизина. Модификация белка малеиновым ангидридом приводит к защищенным е-амино-группам лизиновых остатков схема (27) . [c.275]

    Общеизвестно, что биологически активные белки, особенно секретируемые клетками, такие как ферменты и полипептидные гормоны, синтезируются в виде молекул неактивных предшественников, активируемых посредством специфического гидролитического удаления пептидных фрагментов в результате действия протеолитических ферментов. Этот ограниченный протеолиз вызывает конформационное изменение, в результате которого важные для активности группы занимают правильное пространственное взаимное расположение. Иногда расщепление пептидной связи может высвободить существенную для активности амино- или карбоксильную группу. Одним из простейших примеров ограниченного цротеолиза является активация трипсиногена до трипсина, катализируемая энтерокиназой и автокатализируемая самим трипсином. Процесс активации заключается в отщеплении гексапептида от Л -концатрипсиногена (12). [c.551]

    Последовательность аминокислотных остатков в белковой цепи называется ее первичной структурой. Определение первичной структуры производится путем частичного гидролиза белка с помощью протеаз, катализирующих расщепление пептидной связи лишь нежду определенными остатками. Так, трипсин режет лишь связи, образованные СО-группами остатков основных аминокислот — Apr или Лиз. В результате образуется смесь пептидов — коротких фрагментов белковой цепи. Их идентификация производится посредством химических и физико-химических методов (хроматография, электрофорез). Воздействуя вторым ферментом, можно разрезать другие связи в белке и получить смесь других фрагментов (пептидов) и т. д. [c.33]

    Клосс и Шрёдер [1263а] предложили способ ферментативного гидролиза эфиров N-защищенных и свободных пептидов в препаративных масштабах на основе использования химотрипсина и трипсина. При этом было показано, что эстеразная активность ферментов весьма мало зависит от природы С-концевого аминокислотного остатка. В то же время эфиры пептидов с С-концевой D-аминокислотой, а также со-эфиры не способны к ферментативному гидролизу. Протеолитическое расщепление пептидных связей в условиях гидролиза сложных эфиров под действием эстераз очень незначительно (ср. [1470]). [c.93]

    Последовательность аминокислотных остатков в полипептид-,ной цепи называется ее первичной структурой. Определение пер.-вичной структуры производится путем частичного гидролиза белка с помощью специфических протеаз, катализирующих расщепление пептидной связи лишь между определенными остатками. Так, трипсин атакует лишь те пептидные связи, которые образованы СО-группами остатков основных аминокислот — Apr или Лиз. В результате образуется смесь коротких полипептидных цепей, олигомеров. Такие короткие цепи называются пептидами. Их исследование производится посредством химических и физико-химических методов (хроматография, масс-спектроскопия). Воздействуя другим ферментом, можно разрезать белок по другим связям, получить смесь других пептидов. N- и С-конце-вые остатки белка (см. стр. 68) определяются в результате их химической модификации, предшествующей частичному гидролизу. Зная строение пептидов, полученных при специфическом расщеплении различными ферментами, можно установить первичную структуру белка. Допустим, что белковая цепь имеет структуру [c.73]

    Гидролазы. Ферменты этой группы играют особенно важную роль в пищеварении и в процессах пищевой технологии. К ним относится большая группа протеолитических ферментов, катализирующих гидролиз белков и пептидов. Большое значение в биохимии пищеварения принадлежит протеолитическим ферментам (пепсин, химиотрипсин, аминопептидаза, карбоксипептидаза и др.), осуществляющим деполимеризацию молекул белка по мере его движения по пищеварительному тракту. Протеолитиче-ские ферменты участвуют в процессах, происходящих при переработке мяса, в хлебопечении. С их помощью проводят умягчение мяса и кожи, их применяют при получении сыров. Действие протеаз очень избирательно. Одни протеазы разрушают пептидные связи внутри молекул белка — эндопептидазы и на конце ее молекулы (экзопептидазы), т. е. отщепляют аминокислоты с N- или С-конца, другие расщепляют пептидные связи только между отдельными аминокислотами. Так, трипсин разрушает пептидную связь между лизином (Лиз) или аргинином (Apr) и другими аминокислотами, пепсин — между аминокислотами с гидрофобными радикалами, например между валином (Вал) и лейцином (Лей). Фермент химотрипсин гидролизует пептидную связь между триптофаном, (см. схему) тирозином и другими аминокислотами. В самом общем виде схема расщепления пептидных связей в полипептидной цепи может быть представлена следующим образом  [c.23]

    При изучении действия К-бромсукцинимида па трипсин и трип-синоген (мол. в. 24 ООО) показано, что этот реагент может селективно окислять остатки триптофана без заметного расщепления пептидных связей, образованных карбоксильной группой триптофана [186]. Кроме того, отмечено различие в относительных скоростях окисления этих двух ферментов, которое, по-видимому, можно объяснить различиями в их вторичной или третичной структуре  [c.399]

    Все проферменты поджелудочной железы активируются по сходному механизму для превращения в активную форму необходимо расщепление пептидной связи, образованной остатком аргинина или лизина около начала пептидной цепи предшественника. Именно это расщепление и производится трипсином или иным протеолитическим ферментом, осуществляющим активацию. Механизм действия всех таких ферментов, по-видимому, одинаков в основе его лежит гидролиз точно определенной пептидной связи, производимый в соответствии со специфичностью гидролизирующего фермента, причем необходима специфичность именно такого типа, как та, которой обладает трипсин. В трипси-ногене быка, например, разрывается связь между 6- и 7-амино-кислотными остатками, в химотрипсиногене — при действии трипсина — между 15-м и 16-м. Активация трипсиногена сопровождается отщеплением от белка гексапептида при активировании же химотрипсиногена фрагмент не отщепляется, так как его первый остаток остается соединенным с основной частью молекулы дисульфидной связью. [c.94]

    Одним из уникальных свойств белка является его способность к денатурации — утрате ряда характерных физи-ко-химических и биологических свойств при незначительных воздействиях, не нарушающих системы пептидных связей. Следует, однако, отметить, что известно немало белков, отличающихся очень высокой устойчивостью к денатурации, например, белки Термофильных бактерий, трипсин, химотрипсин и многие другие. Представляется более правильным считать денатурацию проявлением наиболее общего свойства белков. А именно, для всех белков не только при денатурации, но и при выполнении нативными белками их функций в живом организме характерна способность к существенным изменениям физико-химических и биологических свойств без одновременного изменения состава и без расщепления пептидных связей в молекуле. Примерами могут служить реакции сверхосаждения актомиозина под действием АТФ, резкие изменения активности ферментов под влиянием незначительных изменений условий среды и многие другие. Это общее свойство белков должно быть непременно признано их характерным отличием. [c.9]

    Скорость гидролиза трипсином после 6 час очень невелика, и интенсивность нингидриновой окраски в конце процесса соответствует расщеплению двенадцати связей. Гндролиз химотрипсином протекает с постоянной скоростью в течение первых 20 час, завершаясь образованием 18 пептидов. Можно предполагать, что неспецифическое расщепление пептидных связей минимально, если скорость увеличения числа аминогрупп постоянна. При действии пепсина на белок при двух различных значениях отношения фермент/субстрат увеличение интенсгшности нингидриновой окраски теоретически соответствовало расщеплению 7 и 11 связей. В действительности приращение интенсивности окраски объясняется неполным гидролизом большего числа связей. [c.120]

    Продуктом гидролиза белков пищи трипсином являются полипептиды и небольшое количество аминокислот. Трипсин катализирует расщепление пептидных связей, образованных карбоксильными группами аргинина и лизина. Расщепление белков химотрипсином более глубокое по сравнению с гидролизом трипсином. Химотрипсин катализирует расщепление пептидных связей, образованных карбоксильными группами тирозина, фенилаланина, триптофана и метаовива. [c.15]

    Выяснение вопроса, какая конкретно замена произошла в гемоглобине 8, относится к 1954 г., когда Вернон Ингрем (V. 1п гет) разработал новый метод определения аминокислотных замен в белках. Для проведения анализа молекулу гемоглобина расщепляли на фрагменты, поскольку в небольших пептидах, содержащих примерно по 20 аминокислот, выявить замену аминокислоты, безусловно, легче, чем в целой молекуле белка, значительно большей (в 10 раз) по размеру. Гемоглобин подвергали специфическому расщеплению трипсином по пептидным связям, образованным карбоксильными группами лизина и аргинина. [c.92]

    Некоторые ферменты синтезируются в форме неактивного предшественника и переходят в активное состояние в физиоло ически соответствующем месте и времени. Примером регуляции такого типа могут служить пищеварительные ферменты. Так, трипсино-ген синтезируется в поджелудочной железе, а активируется в тонком кишечнике, где в результате расщепления пептидной связи образуется активная форма-трипсин (рис. 6.4). Такой же тип регуляции многократно используется в последовательности ферментативных реакций, ведущих к свертыванию крови. Каталитически неактивные предшественники протеолитических ферментов называются проферментами, или зимогенами. [c.105]

    Катаболизм белков у всех организмов начинается с их расщепления по пептидным связям протеолитич. ферментами. В желудочно-кишечном тракте животных белки гидролизуются трипсином, химотрипсином, пепсином и др. ментами до своб. аминокислот, к-рые всасываются стенками кишечника и попадают в кровоток. Часть аминокислот подвергается дезаминированию до оксокислот, претерпевающих дальнейшее расщепление, др. часть используется печенью или тканями организма для биосинтеза белков. У млекопитающих отщепляющийся от аминокислот аммиак превращ. в орнитиновом х икле в мочевину. Этот процесс осуществляется в печени. Образующаяся мочевина вместе с др. р-римыми продуктами О.в. выводится из кровотока почками. [c.315]

    Подобно большинству ферментов, трипсин и химотрипсин проявляют четко выраженную специфичность по отношению к определенным субстратам. Быстрое расщепление химотрипсином наблюдается в том случае, когда С = 0-группа расщепляемой пептидной связи принадле- [c.112]

    Осуществленный таким способом гидролиз пептидньк связей-это необходимый шаг в определении аминокислотного состава белков и последовательности составляющих их аминокислотных остатков. Пептидные связи могут быть гидро-лизованы также под действием некоторых ферментов, таких, как трипсин и химотрипсин, представляющие собой протеолитические (белок-расщепляю-щие) ферменты, секретируемые в кишечник и способствующие перевариванию, т. е. гидролитическому расщеплению, белков, входящих в состав пищи. Если кипячение пептидов с кислотой или щелочью приводит к гидролизу всех пептидных связей независимо от природы и последовательности соединенных при их помощи аминокислотных звеньев, то трипсин и химотрипсин осуществляют каталитическое расщепление пептидов избирательным образом. Трипсин гидролизует только те пептидные связи, в образовании которьсс участвуют карбоксильные группы лизина или аргинина. Химотрипсин же атакует только те пептидные связи, которые были образованы с участием карбоксильных групп фенилаланина, триптофана и тирозина. Как мы увидим дальше, такой избирательный ферментативный гидролиз оказьшается очень полезным при анализе аминокислотных последовательностей белков и пептидов. [c.130]

    Природные ферменты наиболее близки к идеальным реагентам специфического расщепления белков. Трипсин является-наиболее специфичным в отношении других протеиназ установлены отклонения от специфичности, которой следовало бы ожидать на основании изучения их взаимодействия с син-т ХИч кими субстратами. Однако известно, что трипсин рас-щерляет пептидные связи, в которых участвует карбоксильная группа лизина или аргинина, имеющих положительно заряженную боковую цепь. До сих пор не обнаружено [c.165]

    Расщепление полипептидной цепи на фрагменты проводят обычно при помощи протеолитических ферментов, таких, как трипсин, химотрипсин или пепсин. Эти ферменты действуют на различные участки полипептидной цепи, так как имеют повышенное сродство к различным аминокислотным остаткам. Необходимо учитывать также соседние аминокислотные остатки, т. е. пространственное окружение атакуемой пептидной связи. Оказалось, что трипсин гидролизует только те пептидные связи, в образовании которых участвует карбоксильная группа лизина или аргинина, а химотрипсин гидролизует связи по фенилаланину, триптофану и тирозину Обычно протеолитические ферменты, гидролизующие полипептидные цепи, предварительно иммобилизуют на нерастворимых матрицах для более легкого отделения их от продуктов гидролиза. Далее определяют аминокислотные последовательности каждого полипептидного фрагмента. Для этого чаще всего используют метод Эдмана, заключающийся в анализе полипептида только с Ж-конца. Концевая аминокислота при взаимодействии с фенилизотиоцианатом в щелочной среде образует стойкое соединение, которое можно отщепить от полипептида без его деградации. Фенилтиогидантоиновое (ФТГ) производное аминокислоты идентифицируется хроматографическим методом. После идентификации концевого Ж-амино-кислотного остатка метка вводится в следующий аминокислотный остаток, [c.41]

    Наряду с трипсином из яоджелудочной железы выделяют другую сериновую протеиназу — химотрипсин. Используемый для структурных исследований а-кимотрипсин А проявляет максимальную активность в диапазоне pH 7,8 — 9,0. Химотрипсин обладает гораздо более широкой специфичностью, чем трипсин. Фермент преимущественно катализирует гидролиз пелтидиык связей, образо< ванных карбоксильными группами ароматических аминокислот — тирозина, фенилаланина и триптофана. С меньшей скоростью гидролизуются пептидные связи лейцина, метионина, гистидина. Скорость расщепления отдельных связей в белках и пептидах зависит от характера соседних аминокислотных остатков. [c.45]

    Трипсин — протеаза, ускоряющая гидролиз белков, находящихся в состоянии амфанионов, с оптимумом активности при pH 8,0. Трипсин —белковое вещество с молекулярным весом- 23 ООО. В панкреатической железе образуется неактивный трипсиноген, который при действии специфического активатора— энтерокиназы, выделяемой слизистой двенадцатиперстной кишки и тонкого отдела кишечника, превращается в трипсин (см. работу 30). Трипсин ускоряет гидролиз пептидных связей белков, альбумоз и пептонов. Многие нативные белки лишь с трудом расщепляются трипсином. Триптический гидролиз таких белков идет значительно быстрее после их денатурации или после предварительного расщепления пепсином. Продуктами триптического гидролиза являются поли- и Дипептиды и аминокислоты. Трипсину свойственно и коагулазное действие. [c.186]

    Для расщепления полипептидной цепи на отдельные фрагменты можно использовать несколько методов. Один из широко распространенных методов-это частичный ферментативный гидролиз полипептида под воздействием пищеварительного фермента шрнисмка. Каталитическое действие этого фермента отличается высокой специфичностью гидролизу подвергаются только те пептидные связи, в образовании которых участвовала карбоксильная группа остатка лизина или аргинина независимо от длины и аминокислотной последовательности полипептидной цепи (табл. 6-6). Число более мелких пептидов, образующихся под действием трипсина, можно, следовательно, предсказать, исходя из общего числа остатков лизина и аргинина в исходном полипептиде. Полипептид, в котором содержатся пять остатков лизйна и (или) аргинина, при расщеплении трипсином обычно дает шесть более мелких [c.148]


Смотреть страницы где упоминается термин Трипсин расщепление пептидных связе: [c.442]    [c.365]    [c.270]    [c.182]    [c.294]    [c.60]    [c.182]    [c.288]    [c.113]    [c.147]    [c.78]    [c.277]    [c.78]    [c.42]    [c.42]   
Успехи органической химии Том 1 (1963) -- [ c.178 ]




ПОИСК





Смотрите так же термины и статьи:

Пептидные связи

Расщепление связей

Трипсин

Трипсин связи Lye



© 2025 chem21.info Реклама на сайте