Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебро, коэффициент теплопроводности

    Теплопроводность - свойство материалов проводить тепло с определенной скоростью. Хорошо проводят тепло металлы - серебро, медь, алюминий, сталь. Пластмассы, пластики, каучуки, графит, керамика и шамотный кирпич медленно проводят тепло. Теплопроводность материалов оценивается величиной коэффициента теплопроводности X. При 20°С величина теплопроводности для меди равна 384 Вт/(м К), у стали - в восемь раз ниже. [c.64]


    Опытные данные показывают, что величина Я для разных веществ сильно разнится, а для одного и того же вещества зависит от температуры, плотности, структуры, влажности и других факторов. Наибольшая теплопроводность наблюдается у металлов, для которых значения к при 20 °С находятся в пределах 2,3—418 Вт/(м-К), причем верхний предел относится к серебру. Далее следуют красная медь (X 395), золото Я яй 300), алюминий ( t 210), цинк ( t = 113) и т.д. На коэ ициенты теплопроводности металлов оказывают большое влияние примеси и их концентрация, а также структурные изменения, вызванные термической обработкой, ковкой, вытяжкой и т. п. Так, например, следы мышьяка уменьшают коэффициент теплопроводности меди на 60—65%, а 1% примесей понижает к для алюминия на 15%. Величина к для углеродистой стали падает с ростом содержания углерода, марганца и серы. В результате закалки коэффициент теплопроводности углеродистой стали снижается на 10%. Наконец, для большинства металлов величина к уменьшается с ростом температуры. [c.267]

    Изменение коэффициента теплопроводности поликристаллического серебра (чистота 99,999 /о) в магнитном поле [c.114]

    Деление элементов и простых веществ на металлы и неметаллы в известной степени неоднозначно, С одной стороны, металлы и неметаллы различают по их физическим свойствам, которые проявляются у соответствующих простых веществ. Так, для металлов характерны высокая теплопроводность и электрическая проводимость, отрицательный температурный коэффициент проводимости, специфический металлический блеск, ковкость, пластичность и т.п. Физические свойства неметаллов существенно иные они хрупки, обладают низкой теплопроводностью и электрической проводимостью с положительным температурным коэффициентом (возрастание с температурой) и т.п. С другой стороны, различие между металлами и неметаллами проявляется в их химических свойствах для первых характерны основные свойства оксидов и гидроксидов и восстановительное действие, для вторых — кислотный характер оксидов и гидроксидов и окислительная активность. Ориентируясь на физические свойства, к типичным металлам следует отнести, например, медь, серебро и золото, обладающие наиболее высокой электрической проводимостью и пластичностью. Однако по химическим свойствам эти вещества вовсе не относятся к типичным металлам, поскольку стоят в ряду стандартных электродных потенциалов (ряд напряжений) после водорода. В то же время для элементов IА-группы, являющихся по химическим свойствам самыми активными металлами, некоторые физические характеристики (например, электрическая проводимость) выражены не так ярко. Таким образом, подразделяя элементы на металлы и неметаллы, всегда следует иметь в виду, по каким свойствам это деление осуществляется по химическим или по физическим. [c.244]


    Коэффициент теплопроводности газов находится в пределах 0,005—0,15 ккал м-ч-град), жидкостей 0,08—0,6 ккал м-ч-град). Для твердых тел значения коэффициентов теплопроводности лежат в более широких пределах для теплоизоляционных материалов 0,01—0,1 ккал м-ч-град), Для металлов 2—360 ккал м-ч-град). Коэффициенты теплопроводности металлов, применяемых в химическом машиностроении, имеют следующие значения серебро — 360, медь — 320, алюминий — 170, чугун — 54, никель — 50, углеродистая сталь — 39, свинец — Ю, нержавеющая сталь — 12 — 20 ккал м-ч-град). [c.122]

    Выведите закон Видемана—Франца, согласно которому отношение теплопроводности металла к его электропроводности пропорционально Т, а коэффициент пропорциональности имеет одинаковое значение для всех металлов. Обратите внимание, что это количественная формулировка известного из обычной практики правила, что хорошие электрические проводники, например медь, серебро, обладают и хорошей теплопроводностью. [c.88]

    Для тел, плохо проводящих тепло, коэффициент теплопроводности много меньше единицы, например для стекла Х=5-10 Дж/(см-с-К), а для хорощо проводящих металлов (медь, серебро) близок к единице, т. е. приблизительно в 200 раз больше. [c.125]

    В кипящем слое катализатора, как показано в главе I, перенос тепла осуществляется в быстром вихревом движении и столкновении твердых частиц нри турбулизованной газовой фазе. Эффективные коэффициенты теплопроводности составляют тысячи кДж/(м-ч-°С), в результате и достигается приближение к изотермам как по высоте, так и по сечению слоя для любых малотеплопроводных зерен катализатора. Примерная теплопроводность катализаторов в неподвижном слое, а также окиси алюминия, металлического серебра и катализаторов кипящего слоя приведена [53] для сравнения в табл. II.2. [c.101]

    В таблицах 10. 3—10. 5 сравниваются удельное электросопротивление, удельная теплоемкость и коэффициент теплопроводности урана с этими же свойствами других, более широко известных металлов. Следует отметить, что в определенном интервале температур удельное электросопротивление урана примерно такое же, как и железа, свинца или никеля, но на порядок величины превышает удельное электросопротивление алюминия, меди или серебра. Эти данные надо иметь в виду при индукционном нагреве 0 307 [c.307]

    Из рисунка видно, что при эрозии платиновых металлов в атмосфере воздуха и аргона точки, характеризующие эрозию платины, палладия, родия, меди и золота, лежат на одной прямой. Исключение составляют серебро, у которого самый высокий коэффициент теплопроводности, а также иридий и рутений (в аргоне), имеющие самые высокие температуры плавления и кипения. Чтобы выяснить характер влияния тепловых свойств на величину эрозии, те же металлы в виде корольков весом 150—200 мг помещали в кратер графитового электрода и производили испарение при тех же условиях. В этом опыте теплопроводность металлов не должна играть заметной роли и более четко должно проявиться влияние тепловых свойств металлов. Результаты наблюдения показывают, что серебро, палладий и золото разрушаются сильнее, а тугоплавкие металлы (иридий и рутений) меньше, чем родий и платина, температуры плавления и кипения которых занимают среднее положение. Следовательно, при оценке результатов эрозии следует учитывать тепловые характеристики данного металла. [c.25]

    К металлам относят вещества, которые обладают рядом характерных свойств хорошей электро- и теплопроводностью и отражательной способностью к световому излучению (блеск и непрозрачность), отрицательным температурным коэффициентом электропроводности, повышенной пластичностью (ковкость). Данные свойства металлов обусловлены наличием подвижных электронов, которые постоянно перемещаются от одного атома к другому. Вследствие такого обмена в металлической структуре всегда имеется некоторое количество свободных электронов, т. е. не принадлежащих в данный момент каким-либо определенным атомам. Чрезвычайно малые размеры электронов позволяют им свободно перемещаться по всему металлическому кристаллу и придавать металлам характерные свойства. Слабой связью валентных электронов с ядром атома объясняются и многие свойства металлов, проявляющиеся при химических реакциях образование положительно заряженных ионов-катионов, образование основных окислов и др. Металлы с хорошей электропроводностью одновременно обладают высокой теплопроводностью (рис. 105). Наибольшей электропроводностью обладают металлы серебро, медь, золото, алюминий. Медь и алюминий широко используются для изготовления электрических проводов. По твердости металлы располагаются в ряд, приведенный на рис. 106. По плотности все металлы условно делят на две группы легкие, плотность которых не более 5 г см , и тяжелые. Плотность, температуры плавления и кипения некоторых металлов указаны в табл. 18. Наиболее тугоплавким металлом является осмий, наиболее легкоплавким — ртуть. [c.266]

    Теплопроводность металлов лежит в пределах от 2 до 360 ккал1м час °С. Наибольшей теплопроводностью обладает серебро (Я = 360), медь (Я = 340), алюминий (Я = 180) и т. д. С повышением температуры у большинства металлов теплопроводность понижается. Добавки всех видов уменьшают теплопроводность металлов. Железо, содержащее 0,1 % углерода, имеет Я = 45 при содержании 1 % углерода коэффициент теплопроводности снижается до Я = 34, а при содержании 1,5% теплопроводность понижается до 31 ккал1м - час °С. У закаленной стали Я на 10—25% меньше, чем у мягкой. [c.23]


    Зависнмость эффективного коэффици-е гга теплопроводности при различных значениях га4Т представлена на рис. 3,37.. / акснмальпое значение Я. фф Пе-П [48] более чем на шесть порядков превышает коэффициент теплопроводности Не-1 при Т., = 2,5 К и почти в 5 раз теплопроводность чистого серебра при этой же температуре. Таким образом, температурные перепады в Не-П весьма малы и температура в любой точке объема Не-П практически одинакова. [c.246]

    Масамуне и Смит [8] определяли коэффициент теплопроводности различных образцов катализатора, приготовленного прессова нием кристаллов серебра. Размеры элементарного кристалла диаметр— 50-ь70 мк, средний радиус микропор—150 А. Из таких элементов были получены прессованные таблетки размером 1"Х /2" (табл. V. 1). [c.333]

    Определение коэффициентов теплопроводности различных материалов осуществляется опытным путем. Значения коэффициентов теплопроводности колеблются в очень ш ироких пределах. Наибольшего З1начен1ия коэффициенты теплопроводности достигают у металлов, доходя до величины Х= = 360 ктл/м °С н для серебра и Х = = 330 ктл/м °С ч для красной меди. Объясняется это тем, что в соответствии с современными воззрениями теплопроводность металлов обусловливается переносом энергии в основном свободными электронами, что хорошо согласуется с законом Видемана — Франца, согласно которому отношение теплопроводности и электропроводности чистых металлов при заданной температуре есть величина постоянная. [c.17]

    Коэффициент теплопроводности разных веществ изменяется в широких пределах например, X = 0,0086 вт1м-град (0,0074 ккал1м-ч-град) для четыреххлористого углерода при 100°С и X = 416 втЫ-град (358 ккал/м - ч-град) для серебра при 273°К (0°С). Коэффициент теплопроводности зависит от химического состава, физического строения и состояния вещества. [c.8]

    Кварцевое стекло отличается высокой термической стойкостью длительное применение его допустимо при температурах до 1 000° С, кратковременное— до 1 300—1400°С. Изделия из кварцевого стекла, нагретые до 700—800° С, не трескаются при погру жении в воду. Теплопроводность квар цевого стекла — 6—11 кюал1м ч град Коэффициент его линейного расшире ния в 6 раз меньше, чем фарфора, I в 12—20 раз меньше, чем простого силикатного стекла. Кварцевое стекло имеет вьгсО)Кую электроизоляционную способность. Оно устойчиво по отношению КО всем минеральным и органическим кислотам любых концентраций (кроме плавиковой и фосфорной кислот). Поэтому во многих случаях им заменяют цветные Металлы, а иногда даже серебро и платину. [c.58]

    Весьма перспективно для химической технологии теплообмен ное устройство, называемое теплопроводом. Оно пред ставляет собой полностью закрытую металлическую трубу с лю быми профилями сечения, футерованную каким-либо пористо капиллярным материалом (фитилем), например, шерстяной тканью, стекловолокном, сетками, пористыми металлами, полимерами, керамикой и т. п. В полость трубы подается теплоноситель в количестве, достаточном для полной пропитки фитиля. Температура кипения теплоносителя должна обеспечивать отвод тепла (путем испарения) из охлаждаемого рабочего пространства химического реактора или другого аппарата интервал зон температуры — от какой угодно низкой до 2000 °С. В качестве теплоносителя используют металлы (Сз, К, На, Ы, РЬ, А и др.), высоко кипящие органические жидкости, расплавы солей, воду, аммиак, жидкий азот и др.). Предпочтительны жидкости с высокой скрытой теплотой испарения, большим поверхностным натяжением, низкими плотностью и вязкостью. Трубка одной своей частью располагается в зоне отвода тепла, а остальной частью — в зоне конденсации паров. Пары теплоносителя, образовавшиеся в первой зоне, конденсируются во второй зоне, а конденсат возвращается в первую зону под действием капиллярных сил фитиля. Благодаря большому количеству центров парообразования резко падает перегрев жидкости при ее кипении и значительно возрастает коэффициент теплоотдачи при испарении (в 5—10 раз). Особенностью теплопровода является очень высокая эффективная теплопроводность вдоль потока пара (на 3—4 порядка больше, чем у серебра, меди и алю.миния), что обусловлено низким температурным градиентом вдоль трубы. Мощность теплопровода определяется капиллярным давлением, компенсирующим потери напора парового и жидкостного потоков. [c.336]

    Основная часть радиометра — эллиптическое зеркало 5, которое изготовляют, тщательно полирзш и покрывая внутреннюю полость тонким, слоем золота или никеля. В одном из фокусов зеркала помещают термоприемпик 4, в качестве которого, используют спай термопары или шарик из металла, имеющего высокую теплопроводность (серебро, красная медь). К теплоприемнику приваривают термоэлектроды 7. Для увеличения коэффициента поглощения поверхность термоприемника зачерняют. В другой фокальной плоскости эллипсоида находится диафрагма 1 с небольшим отверстием по оси. Снаружи эллипсоид заключают в водяную рубашку 2. Через отверстия 5 в полость эллипсоида во время работы постоянно вдувают очищенный и осзгшенный воздух. Благодаря этому (воздух удаляется через отверстие. диафрагмы) полностью исключается возможность попада-нип в прибор поглощающей топочной среды, частиц пыли и т. д. Воздух, проходя по змеевику 6, находящемуся в водяной рубашке, приобретает температуру охлаждающей воды. [c.115]


Смотреть страницы где упоминается термин Серебро, коэффициент теплопроводности: [c.260]    [c.112]    [c.179]    [c.57]   
Техника низких температур (1962) -- [ c.382 ]




ПОИСК





Смотрите так же термины и статьи:

Изменение коэффициента теплопроводности поликристаллического серебра (чистота 99,999) в магнитном поле

Коэффициент теплопроводности

Теплоемкость, коэффициенты теплопроводности и линейного расширения золота и серебра

Теплопроводность коэффициент теплопроводности



© 2025 chem21.info Реклама на сайте