Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы теплопроводность

    Теплопередача внутри пористого зерна катализатора определяется некоторым эффективным коэффициентом теплопроводности так же, как диффузия — эффективным коэффициентом диффузии данного вещества. Конечно, неренос тепла идет в основном через твердую фазу, в то время как перенос вещества — только через норы. Вопрос о том, как связана эффективная теплопроводность со структурой пор и свойствами твердой фазы, обсуждается в главе 5 книги Петерсена (см. библиографию, стр. 147) здесь мы только отметим, что коэффициент теплопроводности может быть определен таким образом, что тепловой поток через единичную площадку внутри частицы будет пропорционален градиенту температуры по направлению нормали к этой площадке с коаффициентом пропорциональности к . [c.142]


Рис. IV. 5. Коэффициенты теплопроводности в Зернистом слое йз песка (а) й катализатора (шары, й = 5,94 мм) (б) Рис. IV. 5. <a href="/info/28346">Коэффициенты теплопроводности</a> в <a href="/info/94714">Зернистом слое</a> йз песка (а) й катализатора (шары, й = 5,94 мм) (б)
    Регулируя давление пара в циркуляционной системе автоматическим регулятором, можно очень точно держать заданную температуру процесса (в пределах 1°). Чтобы обеспечить надежную работу теплоотводящей системы, учитывая низкую теплопроводность катализатора (разница температур между водой и катализатором составляет 5—8°), объем, заполненный катализатором, разделяют па узкие секции при помощи системы железных пластин, перпендикулярных водяным трубкам. Реактор выполняется довольно массивным. [c.90]

    Значительно меньше данных имеется по теплопроводности катализаторов и адсорбентов с пористой разветвленной структурой [1].,  [c.107]

    Схема установки изображена на рис. 54. Газ-носитель водород через регулятор расхода I типа РРГ-1А поступает в сатураторы 2 со скоростью 2—3 мл мин, где при 10—12° С он насыщается парами изооктана и поступает в реактор 4 с анализируемым катализатором. Из реактора продукты реакции отводятся в пробоотборный кран 6 и далее в хроматографическую колонку 7 или в линию сброса. Колонка заполнена частицами термоизоляционного кирпича размером 0,3—0,4 мм, пропитанными 15%-ным раствором хинолина, и имеет кран для обратной продувки. После колонки газ-носитель и продукты реакции пропускают через детектор по теплопроводности 8. Температура в реакторе и сатураторе поддерживается электропечью 5 и термостатом 3. [c.160]

    Возможность применить то или иное вещество в качестве катализатора зависит от химических свойств, которыми обладает это вещество. Физические характеристики катализатора определяют его эффективность и практическую пригодность. К этим характеристикам относятся величина поверхности, пористость, диаметр пор, диаметр частиц, структурная прочность, теплоемкость, теплопроводность и стабильность в условиях реакции. [c.303]

    Динамического и химического подобия обычно нельзя достигнуть одновременно например, если остается постоянным время реакции, то число Рейнольдса, в которое входит линейная или массовая скорость, изменяется. В гетерогенных каталитических процессах полное подобие может быть достигнуто при изменении размера частиц катализатора и его активности. Если теплопередача осуществляется теплопроводностью или конвекцией, размер частиц должен быть пропорционален диаметру сосуда, а активность катализатора должна меняться обратно пропорционально квадрату диаметра реактора оба условия очень тяжелы и обычно невыполнимы. Часто имеют значение только некоторые из факторов, влияющих на реакцию, так что существенным будет равенство только тех безразмерных комплексов, в которые они входят. Например, если скоростью диффузии определяется процесс в гетерогенном реакторе, то рассмотрение одного динамического подобия будет достаточным для выяснения условий моделирования. [c.341]


    В лобовом слое катализатора иногда помещают металлический никель без носителя, слой которого имеет высокую теплопроводность. Считают, что последнее обстоятельство препятствует образованию свободного углерода (см. табл. 30, № 12). [c.47]

    Пусть с —теплоемкость единицы массы реакционной смеси при постоянном давлении и пусть к—эффективная теплопроводность содержимого элемента (среда и катализатор). Предположим для простоты, что эти величины не зависят от температуры. Тогда, если —массовая скорость через единицу поверхности в плоскости X, у, а Т — температура (относительно исходной температуры) на нижней поверхности элемента, то выражение для суммарного потока тепла через эту поверхность запишется следующим образом [c.57]

    Большая трудность при проведении синтеза но Фишеру-Тропшу с кобальтовым катализатором состоит в том, что на 1 синтез-газа развивается приблизительно 600—700 ккал тепла, которое должно быть отведено, потому что температура катализатора должна поддерживаться с точностью до 1°. Промышленный катализатор на кобальтовой основе содержит на 100 частей кобальта 5 частей окиси тория, 8 частей окиси магния и 200 частей кизельгура. Катализатор отличается чрезвычайно низкой теплопроводностью и поэтому проблема отвода тепла становится особенно трудной. Контактная камера установки Фишера-Тропша, вмещающая 10 кобальтового катализатора, может из-за плохого отвода тепла пропустить лишь 1000 синтез-газа в час. Требуемая поверхность охлаждения для 1000 синтез-газа составляет около 3000 м . Из 1 газа получают 165 —175 г целевых углеводородов. В настоящее время современные установки синтеза Фишера-Тропша работают только с железным катализатором, состоящим практически только пз железа и обладающим значительно лучшей теплопроводностью. [c.27]

    Расчет эффективного коэффициента теплопроводности слоя катализатора по измерениям в экспериментальном реакторе. Величина эффективной теплопроводности может быть определена непосредственно, если известно распределение температуры по оси реактора, а также распределение температуры стенок реактора по всей длине слоя. В большинстве методов, использующихся Дл определения эффективного коэффициента теплопроводности [c.175]

    Это уравнение основано на определенных упрощениях. В действительности слой катализатора неоднороден и обладает конечной длиной. Среднюю величину эффективного коэффициента теплопроводности для полной длины слоя находят по формуле  [c.176]

    Примером затухания реакции из-за наличия геплопроводно-сти в обратном направлении могут служить некоторые типы каталитических реакций и пламенное горение. Рассмотрим окисление аммиака или метанола, которое осуществляют пропусканием паро-воздушной с.меси через слои платиновой или серебряной сетки соответственно. В обоих процессах теплопроводность катализатора обусловливает обратную передачу тепла, и в них обоих существует два стационарных со стояния — желательное, при почти полном иревращении, когда катализатор нагрет до красного каления, и нежелательное, когда конверсия близка к нулю, а. катализатор холодный. Для достижения верхнего стационарного состояния катализатор должен быть предварительно подогрет (например, с помощью горелки). Это состояние поддерживается до тех пор, пока катализатор остается активным (обычно к этому и стремятся). Подобные случаи подробно рассмотрены [c.164]

    Результаты исследований и вышеприведенные формулы позволили определить эффективный ко-эффициент теплопроводности. Помимо описанного реактора А, измерения проводились также на меньшем реакторе В. Объем реактора составлял 0,9 А, длина 60 см, диаметр 46 мм, объем слоя катализатора 600 мл высота слоя 37,8 мм. Полученные значения эффективного коэффициента теплопроводности приведены в табл. 4. [c.178]

    Исходя из принятой начальной температуры газа, можно, пользуясь кинетическими данными предыдущих лабораторных исследований, проверить распределение температуры и степени превращения по оси реактора. Зная теплопроводность наружной изоляции и эффективный коэффициент теплопроводности слоя, можно рассчитать величину теплопотерь и учесть ее при нахождении распределения температуры вдоль слоя. Далее можно определить необходимую высоту слоя катализатора. При использовании этого метода оказалось, что высота слоя должна составлять А м, а его объем — 212 л. Подъем температуры можно существенно уменьшить, увеличивая избыток водорода. Следует также проверить, не превышает ли сопротивление потоку допустимую границу. Если для большей уверенности увеличить высоту слоя на 20%, то, в ко- [c.179]

    Бик 1 анализирует данные для реактора с неподвижным слоем при учете теплопроводности твердой фазы и теплоотвода через стенку. При изменении диаметра реактора массовую скорость и диаметр частиц катализатора нужно подобрать таким образом, чтобы величины к и /гг, определяемые уравнениями (П1,87) и (П1,88), имели те же значения, что и в реакторе-прототипе с учетом зависимости активности от диаметра зериа. Для успешного [c.242]


    Законы переноса вещества и тепла идентичны. Из-за развитой внутренней поверхности имеет место интенсивный теплообмен между обеими фазами, приводящий к гомогенизации системы. Поэтому становится вполне приемлемым использование закона Фурье q = — Я-эф grad Т, определяющего плотность теплового потока q в зависимости от градиента температуры и величины коэффициента эффективной теплопроводности зерна катализатора Хэф. Экспериментальные значения Хдф, найденные различными авторами, например [73], свидетельствуют о том, что на теплопроводность пористых зерен относительно слабо влияют теплофизические свойства твердого материала. Большое влияние оказывает теплопроводность газовой фазы. Однако решающее значение на величину зф оказывают геометрические характеристики структуры, особенно величины площадей наиболее узких мест или окрестности областей спекания, сращивания, склеивания частиц друг с другом. Для приближенной оценки величины Хэф можно рекомендовать монографию [74], в которой представлен значительный объем экспериментальных данных по дисперсным материалам. [c.157]

    Для размещения 10 м катализатора требовалось 2000 труб длиной 4,5 м. При этом вес реактора был весьма значительным сильно повышалась стоимость аппарата. Несмотря на малую толщину слоя катализатора, поперечный температурный градиент был велик и разность температур между стенкой и серединой слоя достигала 8—12 °С. При охлаждении обычной кипящей жидкостью температура хладоагента постоянна, и реакция протекает в основном в верхних слоя катализатора. Небольшое возрастание скорости газового потока вызывает увеличение тепловыделения и порчу катализатора вследствие перегрева. При нормальных условиях количество перерабатываемого газа не превышало 100 м ч на 1 м катализатора, причем скорость потока, отнесенная к пустому сечению, составляла 5—10 см сек. Производительность реактора, работавшего на 10 м катализатора, составляла 2 г углеводородов в сутки. Для повышения производительности были созданы условия, при которых теплоперенос осуществлялся не только при помощи теплопроводности через слой катализатора, но и путем конвекции. [c.346]

    На общую степень внутреннего использования поверхности катализатора т] влияют большие совокупности физико-химических явлении (диффузия, теплопроводность, массо- и теплообмен, геометрия зерна). Зависимости общей степени внутреннего использования поверхности т] от последних для упрощения анализа целесообразно представить в виде функции от некоторых безразмерных комплексов от модуля Тиле ф, фактора экзотермичности р, критериев Нуссельта Хи, Шервуда и т. п. [c.28]

    Принимаем следующие исходные данные / =500°С з=400°С подача катализатора 1,75 т на 1 т перерабатываемого сырья удельная теплоемкость реагирующих паров Сп = 0, 5, то же контакта-теплоносителя Сг = 0,25 W. — ОтСг =437,3 Wn = G n = 750 диаметр гранул катализатора (1 =4 мм внешняя поверхность всех гранул 1 т контакта / у=1500 м то же на 1т сырья fy = = 1500-1,75 = 263Э м удельный вес паров (М =200 t = 418° С и Р = i, 7 ama) Уп = 5,98 кг м средняя скорость паров в свободном сечении аппарата (при Р = 1,1 [ата) = 0,276 м сек то же в живом сечении реактора IV ==0,726 лО-сек насыпной вес гранулированного катализатора ук = 0,б2 порозность поступающего контакта m =0,38 (равная доле свободного объема гранулированного катализатора) теплопроводность реагирующих паров А=0,02 ккал м абсолютная вязкость паров г =9,87 10 пуаз эквивалентный диаметр свободного сечения аппарата [c.208]

    Обычно I процессо работы теплообменио1 о аппарата па тепло-передающеп пояерхиости накапливаются различные отложения соли грязь, кокс, смолы, катализатор, парафин. Эти отложения обладают малой теплопроводностью, вследствие чего значительно снижают коэффициент теплопередачп. [c.153]

    В случае синтеза среднего давления катализатор находится в трубках ( 2000 на 1 реактор), окруженных водой, температура которой также определяется давлением. В обоих случаях для отвода тепла используется вода. Передача тепла от катализатора к охлаждающим поверхностям обеспечивается в основном синтез-газом, так как катализатор, содержащий большой процент кизельгура, обладает очень низкой теплопроводностью. Чем меньше диаметр трубок, в которых находится катализатор, тем меньше местных перегревов катализатора и тем ниже метарюобразование. Возможная удельная нагрузка катализатора, выраженная в нм газа. на 1 объема катализатора в час, сравнительно невелика в связи с необходимостью соответствующего теплоотвода. Соответственно невелика и мощность реакторов. Реактор емкостью примерно 10 катализатора может пропустить 1000 м час синтез-газа, что при выходе 165—170 г. полезных продуктов синтеза на 1 нм шревра-щенного газа соответствует примерно 120 кг час продуктов синтезе (Сз и выше). Охлаждающая поверхность на 1000 превращенного газа составляет около 3000 м , а расход металла на 1000 м час превращенного паза составляет 65 т. [c.68]

    Пример 3, Рассчитать радиальный коэффициент теплопроводности в реакторе с неподвижным слоем гранулированного катализатора и проходящим через него жидкостным потоком реакционной смеси. Теплопроводность жидкой фазы и материала катализатора соответственно равна Хр = 0,147 ккал/м ч град, = = 0,043 ккал/м ч град. Порозяость насадки катализатора е = = 0,35. Радиальный коэффициент цереиоса вещества слоя катализатора Dj. = 5,5 10 м /ч. Плотность жидкой фазы р = = 1060 кг/лЗ, ее теплоёмкость Ср = 0,461 ккал/кг град. [c.71]

    Однако установить однозначную зависимость между N и Ре одновременно от всех вероятностных характеристик пока не удается. Совмеш ение одной вероятностной характеристики приводит к расхождению других. Так, несмотря на внешнее сходство кривых (Л, i) и г[з (Pe i) они по своей сущности значительно отличаются друг от друга. Этот факт объясняется тем, что перенос вещества в ячейках и между ними характеризуется не только числом Ре., о чем свидетельствуют данные экспериментальных исследований, связанных с определением коэффициента продольного переноса. Соотношениями (IV.62) и (IV.63) легко объяснить значения коэффициента продольного переноса в газофазных реакторах с сильно тур-булизированным режимом, когда достигается равенство между эффективными коэффициентами продольного переноса и температуропроводности, т. е. при Z) = a i — = Kf , где X и Су — соответственно коэффициенты теплопроводности и теплоемкости реагирующей массы. В этом случае, предположив, что длина ячейки-реактора AL равна диаметру зерна катализатора [82 ] при L о и Л > 10, [c.104]

    В предыдущих рассуждениях теплопроводность не принималась во внимание, так как ею можно было пренебречь. Однако в некоторых случаях поток теплоты за счет теплопроводности div к grad Т) в изотермических реакторах может иметь очень важное значение. Например, при гетерогенных реакциях, когда теплота образуется на поверхности катализатора, отвод ее с конвективным потоком тормозится. [c.228]

    Кислотность катализатора определяют по количеству адсорбированного им аммиака из потока гелия при 200—260 °С. Выбор аммиака в качестве адсорбата обусловлен небольшим размером его молекулы, устойчивостью при высоких температурах, простотой его дозировки в поток газа-носителя, подходящей константной диссоциации (р/( = 4,75), позволяющей определять не только сильные кислотные, но и слабые центры. При анализе используют высокотемпературный хроматограф марки Вилли-Гиде с детектором по теплопроводности и температурой термостатирования 260 С. Хроматограф снабжен системой блокировки для отключения его в случае неконтролируемого повышения температуры выше установленной. Схема установки показана на рис. 44. Гелий из баллона проходит систему очистки, состоящую из кварцевой колонки с окисью меди 5 для очистки от водорода и углеводородов при 600—700°С, колонки с никельхромовым катализатором 7 для очистки от кислорода, колонки с аскаритом 9 для поглощения двуокиси углерода и осушительных колонок с окисью [c.133]

    Теория расчета реакторов с неподвижным слоем катализатора была далее усовершенствована Динсом и Лапидусом [10], а также Биком [11], В настоящее время эта теория уже довольно основательно разработана, однако имеются сомнения в надежности экспериментального. материала, лежащего в ее основе, и отсюда сомнения в возможности ее использования для расчета реакторов с неподвижным слое.м катализатора . Это за.мечание, в частности, относится к расчету распределения температур, учитывая очень сильную зависимость скорости реакции от температуры, Несомненно, большое влияние может оказать и неполнота наших представлений о механизме теплопроводности слоя и неточный выбор температурного коэффициента. Достаточно разработанная теория должна учитывать разность темпе- [c.58]

    В случае процессов, протекаюших в пламени, обратная теплопроводность осуществляется непосредственно через реагирующую газовую смесь, а не через катализатор. (Здесь имеет значение также и обратная диффузия свободных радикалов.) Если обратная теплопроводность не достаточно интенсивна, то темпе-рг1тура холодного газа, поступающего в реакционную зону, оказывается ниже температуры воспламенения и он выдувает пламя. [c.165]

    Перейдем теперь к рассмотрению дополнительных условий, которые, хотя и не применимы к обжигу сульфида цинка, но могут быть использованы ири исследовании процесса выжигания углерода из катализатора крекинга. Как отмечалось выше, этот процесс исследовали Джонсон, Фроумент и Уотсон [29]. Они считали необходимым ввести следующие допущения 1) теплопередача настолько эффективна, что и газ и твердая фаза имеют одинаковую температуру в любом поперечном сечении слоя 2) тепло в направлении газового потока передается только путем конвекции, т. е. теплопроводностью можно пренебречь. [c.181]

    Уравнение позволяет оценить максимальную разность температур между центром зерна катализатора и его поверхностью. Для этого в уравнение (6.31) подставляют минимальное значение с, т. е. нуль для необратимых реакций и термодинамически равновесную концентрацию для обратимых. Используя этот метод, Прейтер провел расчет для эндотермической реакции дегидрирования циклогексана (АЯ = 52,54 ккал1моль), которая осуществлялась на промышленном катализаторе при 400° С, и показал, что температура в центре зерна может быть ниже температуры поверхности, по крайней мере, на 53° С. Шилсон и Амандсон [32] развили эту теорию применительно к сферическому зерну и определили его температуру как функцию координат они показали, что повышение температуры для экзотермических реакций может составлять до 60° С. В случае катализатора, изготовленного из высокопористого. материала (т. е. с хорошими диффузионными характеристиками) с плохой теплопроводностью разность температур, естественно, будет больше. [c.184]

    Из давно применяющихся методов здесь следует упомянуть методы Хэлла и Смита а также Ирвина, Олсона и Смита , опубликованные в 1949 и 1951 гг. Описываемые методы ставили своей задачей определение длины слоя катализатора, необходимого для получения заданной степени превращения, а также вычисление степени превращения для заданной длины слоя как функции таких параметров, как скорость потока, исходный состав вещества, температура и давление на входе реактора. Расчеты проводились для неизотермического и неадиабатического процессов. В этом случае, вследствие потока тепла через стенки реактора, возникает поперечный температурный градиент, причем разность температур в радиальном направлении может быть значительной. Необходимо иметь возможность определения температурного профиля в осевом, и радиальном направлениях. Для получения данных, необходимых для проектирования, и прежде всего скорости реакции как функции температуры, давления, состава, а также эффективного коэффициента теплопроводности, требовались соответствующие экспериментальные исследования. В настоящее время теория и эксперимент, относящиеся к проблемам теплопроводности, получили значительное развитие. До недавнего времени, однако, эти данные были довольно ненадежными, а соответствующие методы расчета еще и сегодня нельзя считать достаточно завершенными. [c.153]

    Приведенное уравнение основано на упрощающих предположениях о том, что температура катализатора и газа одинаковы и что теплопроводностью в осевом направлении, и массообменом в радиальном направлении можно пренебречь. Необходимое для расчетов значение (при отсутствии химической реакции) было взято из работ Хоугена и Пайрета , Коберли и Маршалла , а также Буннеля, Ирвина и Смита [c.160]

    Ззяты следующие размеры и параметры радиус трубы реактора / =1,87 см высота реактора z=10 см средний диаметр частицы катализатора йц = 0,318 см порозность слоя е = 0,39 коэффициент теплопроводности зерен Яч=1,6-10-2 кал см-сек-град) температура охлаждающей жидкости = 320 °С = 593 °К давле- [c.198]

    Уравнения (3.10) и (3.11) написаны для одного компонента и единственной реакции в предположении равнодоступности всей поверхности. Для сложных смесей могут оказаться существенными процессы переноса тепла и вещества стефановским потоком, термодиффузией, диффузионной теплопроводностью. Неравнодо-стунность наружной поверхности зерен катализатора в неподвижном слое связана с тем, что основной поток газа проходит в виде струй, омывая часть наружной поверхности зерен катализатора. Вблизи точек контакта зерен образуются карманы>>, непроточные области, вихревые зоны. Тепло- и Д1ассообмен между поверхностью и потоком в проточной части и в непроточной области, вообще говоря, различен. Но при скоростях потока порядка 0,5 нм /с можно считать поверхность зерна равнодоступной, характеризуемой одним коэффициентом обмена. [c.156]


Смотреть страницы где упоминается термин Катализаторы теплопроводность: [c.288]    [c.329]    [c.69]    [c.467]    [c.467]    [c.242]    [c.162]    [c.161]    [c.175]    [c.69]    [c.156]    [c.240]    [c.245]    [c.282]    [c.283]    [c.233]    [c.237]   
Массопередача в гетерогенном катализе (1976) -- [ c.167 ]




ПОИСК







© 2024 chem21.info Реклама на сайте