Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтропия и ее изменение при химических процессах и фазовых переходах

    Следует отметить, что фазовые переходы (испарение, сублимация и плавление) —это не только физические процессы изме нения состояния, но и в значительной степени химические процессы разрыва и образования связей, сопровождающиеся изменением энтальпии и энтропии в системе. [c.33]

    Изменение энтропии в результате протекания химических реакций так же, как и в фазовых переходах, вычисляют как разность между энтропией конечного и начального состояний системы. Так, для процесса [c.190]


    В 1911 г. М. Планк (1858—1947) подтвердил этот вывод для случаев, когда энтропия чистых кристаллических веществ при абсолютном нуле равна 0. Тепловая теорема Нернста немедленно привлекла к себе внимание исследователей прежде всего как основа для расчета энтропии и других термодинамических параметров химических реакций и фазовых переходов. Оказалось, что для вычисления энтропии по формуле Кирхгоффа достаточно знать лишь характер зависимости теплоемкости от температуры. После дискуссии о пределах применимости теоремы Нернста была принята следующая ее формулировка (1911) при абсолютном нуле все равновесные процессы происходят без изменения энтропии, которая остается равной нулю. Она получила приложение в ряде исследований. Сам В. Нернст рассчитал из удельных теплот температуру перехода ромбической серы в моноклинную. Особое значение теорема имела при расчетах режимов различных технологических процессов. Так, Ф. Габер в 1907 г. вычислил значение равновесия реакции синтеза аммиака из элементов. Далее на основе данных теплот образования углеводородов, определенных Ю. Томсеном, оказалось возможным рассчитать, что при взаимодействии водорода с углеродом при 500 °С и атмосферном давлении равновесие реакции наступает [c.242]

    Бездиффузионные фазовые превращения могут различаться по типу изменяющихся в ходе процесса их термодинамических характеристик. Превращениями первого рода называют процессы, при которых происходит изменение производных химического потенциала по температуре или давлению. Отсюда следует скачкообразное изменение при фазовом переходе таких термодинамических параметров, как энтропия, объем, энтальпия, внутренняя энергия. При превращениях второго-рода первые производные химического потенциала по интенсивным параметрам не меняются, но изменяются производные более высоких порядков (начиная со второго). В этих процессах при непрерывных энтропии и объеме системы происходит скачкообразное изменение величин, выражаемых через вторые производные энергии Гиббса теплоемкости, коэффициента теплового расширения, сжимаемости и т.д. [c.174]

    Уравнение Клаузиуса — Клапейрона. Рассмотрим условия равновесия для процессов, в которых не происходит изменений химического состава вещества, но изменяется его фазовое состояние. Теоретически можно найти зави симость между изменениями энтропии и объема, сопровождающими фазовое превращение, и температурным коэффициентом давления. Эта связь выражается уравнением Клаузиуса Клапейрона, которое. можно обосновать различными путями. В термодинамике применяются два основных приема теоретических исследований фазовых переходов метод круговых процессов и метод потенциалов. [c.130]


    Мы рассмотрели процессы (рис. 26.2 и 26.3) очень общего типа, ничего не предполагая относительно природы систем А и В. Необходимо только, чтобы они могли работать циклически и конечное состояние совпадало с исходным. Этому требованию может удовлетворять любая система. Далее, мы ничего не оговаривали относительно природы резервуаров, за исключением того, что они изотермичны. Это могут быть массы с большими теплоемкостями, такие, как океаны и атмосфера. Это могут быть химические системы, реагирующие при постоянной температуре. Это могут быть системы, в которых происходят фазовые превращения, поддерживающие температуру постоянной, как в ледяной бане. Наконец, это могут быть любые другие системы с постоянной температурой, например живые системы и даже человек. Поскольку рассмотрение имело соверщенно общий характер, следовательно, общими являются и выводы. До тех пор пока кто-нибудь не обнаружит систему, в которой суммарный поток тепла будет переходить от более холодной области к более теплой без каких-либо других изменений, мы должны принять, что энтропия Вселенной (и любой изолированной системы) возрастает при любом реальном процессе. Способность изолированной системы постоянного объема совершать работу непрерывно снижается. Если изолированная система увеличивается в объеме, ее способность совершать работу уменьшается еще быстрее, так как вследствие расширения ее энергия будет менее концентрирована. [c.342]

    Изложение раздела о парциальных величинах велось здесь для процесса непрерывного изменения состава однородной фазы. Однако само определение парциальной величины как изменения интегрального свойства системы при возрастании массы компонента системы на единицу может быть с успехом применимо в той же форме и к гетерогенной системе, состоящей из двух или большего числа фаз. В этом случае правило равенства химических потенциалов компонентов в двух равновесных фазах сохранятся. Парциальные же энтальпии и энтропии изменяются скачком при переходе границы фазовых полей. [c.9]

    Уравнения, выведенные в 2.1, применимы только для процессов в системах, в которых исключены любые превращения, приводящие к изменениям масс составных частей этих систем. Переход разнородных атомов из одной фазы в другую вызывает повышение энтропии всей системы, которое не учитывается в уравнении свободной энергии. Кроме того, эти уравнения применимы только к фазовым превращениям идеально чистых веществ. Практически же никогда не имеют дело с абсолютно чистыми веществами. Поэтому необходимо учитывать возможность образования растворов, т. е. гомогенных смесей атомов газов, жидкостей или твердых тел. При этом любой компонент может находиться в двух или нескольких фазах одновременно, а с изменением условий может происходить его переход из одной фазы в другую. Для термодинамического исследования многокомпонентных систем нужно такое уравнение свободной энергии, которое учитывало бы явления массопереноса между фазами переменного состава, т. е. растворами. Все встречающиеся в природе сложные химические вещества можно подразделить на фазы постоянного и переменного составов. Кристаллические фазы строго определенного состава, например химические соединения, подчиняющиеся закону простых и кратных отношений, являются некоторым предельным случаем. Однако при всех конечных температурах неизбежно появляются точечные дефекты. Следовательно, говоря о фазах постоянного состава, имеют в виду фазы с очень малыми отклонениями от стехиометрии, которые не обнаруживаются химико-аналитическими методами (см. гл, IV), Поэтому теории растворов, т, е. фаз переменного состава, применимы почти ко всем кристаллическим материалам. [c.84]


Смотреть главы в:

Курс химии -> Энтропия и ее изменение при химических процессах и фазовых переходах




ПОИСК





Смотрите так же термины и статьи:

Изменение энтропии

Переходы фазовые

Химические энтропии

Энтропия процесса

Энтропия фазовых переходах



© 2024 chem21.info Реклама на сайте