Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод химико-аналитический

    Аналитическая химия — это одна из важнейших химических наук, предметом которой является разработка методов определения качественного и количественного состава всевозможных объектов, встречающихся в природе или изготовленных искусственным путем. Это могут быть минералы, почва, природные воды, воздух, металлы, искусственные материалы, ткани и органы животных, пищевые продукты. Вообще необходимо знание состава любого материала или продукта. Не менее важен также химико-аналитический контроль производственных, биологических и природных процессов, т. е. определение зависимости состава от времени. [c.72]


    Аналогия в химико-аналитических свойствах элементов, занимающих соседние клетки в периодической системе, открывает широкие возможности для прогнозирования и разработки новых методов анализа. Было известно, например, что Мо (V) дает цветную реакцию с тиоцианатом. Можно было ожидать, что N6 (V), как соседний элемент по периодической системе, также будет давать соединение с тиоцианатом. Эксперимент оправдал эти ожидания и для ниобия был также разработан тиоцианатный метод фотометрического определения, широко используемый в настоящее время. Аналогичные примеры известны для методов определения тантала и протактиния и для многих других сочетаний элементов. Аналогия свойств, соответствующая периодическому закону, проявляется не только непосредственно в химических реакциях кислотно-основного взаимодействия, комплексообразования, осаждения и т.д., но и во многих других процессах, имеющих химико-аналитическое значение, — их экстрагируемо- [c.15]

    Для оценки коррозионной активности среды и ее изменений могут применяться и применяются различные методы, в частности, методы химико-аналитического контроля. [c.11]

    В нашей стране на предприятиях различных отраслей имеется большое число химико-аналитических лабораторий — порядка двадцати тысяч. На них работает огромное число сотрудников. Служба аналитического контроля играет важную роль в становлении и налаживании многих промышленных производств. Совершенствование методов аналитического контроля способствует повышению качества продукции и достижению большей стабильно- [c.233]

    Ускорение темпов производства также вызывает необходимость разработки новых методов анализа, так как количественный химический анализ является основой контроля производственных процессов. Наконец, методы, разработанные для химико-аналитического разделения некоторых редких и цветных металлов, в ряде случаев применяются и для технического разделения их. [c.10]

    Гравиметрический и титриметрические методы анализа играют существенную роль в современной аналитической химии. Область практического применения этих методов расширяется благодаря использованию новых органических реагентов в гравиметрии, комплексонов в титриметрии и совершенствованию химико-аналитической аппаратуры. [c.122]

    Ядерный магнитный резонанс. Все рассмотренные нами до сих пор методы атомного и молекулярного спектрального анализа относились к оптическим областям спектра. Но оказалось, что и в радиоволновой области в определенных условиях можно получать ценные сведения о структуре химических, особенно органических, соединений. Метод ядерного магнитного резонанса, первые практические применения которого имеют всего 10 — 15-летнюю давность, стал в настоящее время одним из основных методов установления структуры органических соединений. Одновременно быстро увеличивается круг его применения для целей качественного и количественного анализа, особенно в случае сложных задач, когда применение других методов мало эффективно. Уже в настоящее время в ряде производств сложных органических соединений в химико-фармацевтической промышленности и производстве красителей для цветных фотоматериалов ход производства и качество готовой продукции контролируется методом ядерного магнитного резонанса. Несомненно, что и в ближайшем будущем применение этого метода в аналитических целях будет стремительно расти. [c.342]


    Господствующий до сего времени метод химико-аналитического контроля не всегда дает исчерпывающие данные для суждения о правильности течения производственных процессов, так как сплошь и рядом при постоянном химическом составе получаемые продукты обладают различными свойствами, что в свою очередь является следствием различия минерального состава. Определение кристаллической структуры перерабатываемых веществ во многих случаях способствует выяснению ряда погрешностей, имевшихся при термической обработке сырьевых смесей, [c.208]

    Погрешности фотометрического определения складываются из общих погрешностей, свойственных химико-аналитическим работам, и кроме того из специфических погрешностей метода, возникающих вследствие неправильного проведения химической реакции, использования грязных кювет, невоспроизводимости установки кювет в фотометрическом приборе и неточной настройки его на оптический нуль, нестабильности работы используемого в приборе источника сплошного излучения и функционирования фотометрической схемы, а также за счет погрешностей при построении градуировочного графика. Естественно, что эти погрешности могут быть сведены к минимуму тщательной и аккуратной работой. [c.61]

    Идентификация веществ. Очищенное вещество должно быть испытано на содержание примесей и соответствие его состава и строения предполагаемой формуле. Для определения содержания отдельных примесей используются различные химико-аналитические методы. В лабораторных условиях чаще всего бывает необходимо установить содержание в препарате основного вещества. О действительном соответствии полученного препарата ожидаемой формуле судят, сравнивая его физико-химические константы с табличными значениями для соответствующего вещества. [c.24]

    Методы аналитической химии основаны на общехимических законах и на химических свойствах элементов. Выделим некоторые разновидности химико-аналитических работ в зависимости от решаемых задач. [c.73]

    Физико-химические методы, отличающиеся высокой чувствительностью и экспрессностью выполнения, дают возможность автоматизировать химико-аналитические определения и являются незаменимыми при анализе малых и ультрамалых количеств неорганических и органических веществ. Физико-химическим методам принадлежит ведущая роль в аналитическом контроле производства на больших предприятиях химической промышленности, и особенно в контроле производств, использующих в технологических процессах высокие температуры и давления, огнеопасные, ядовитые, взрывчатые и радиоактивные вещества. [c.18]

    В компактной форме раскроем содержание исследований, выполненных в 1999-2001 гг., и их основные результаты. Предметом исследований были два перспективнейших класса материалов полимерные материалы и сложнооксидные материалы, а также проблемы, находящиеся на стыке неорганического и органического материаловедения. Исходные композиции и полученные материалы исследовали комплексом методов (химико-аналитических, оптических, структурных, спектроскопических, термодинамических, термических, электрохимических, магнитных, механических, и др.). [c.117]

    Необходимо отметить, что, несмотря на прогресс инструментальных методов анализа, позволяюш,их решать химико-аналитические задачи, [c.21]

    Лишь овладев самыми разнообразными методами анализа и сочетая химические, физические и физико-химические методы анализа, хи-мик-аналитик сможет успешно разрешить любую поставленную перед ним химико-аналитическую задачу. [c.22]

    Уравнение (2.6.2) показывает, что количество информации, даваемое методом анализа, определяется в основном затрачиваемым временем и разрешающей способностью аппаратуры. Влияние точности менее заметно, так как в уравненне (2.6.2) она входит под знаком логарифма. В оценке указанных выше трех факторов одновременно находят свое выражение тенденции развития аналитической химии как науки. Задача химико-аналитического исследования несомненно заключается в отыскании новых методов анализа, предоставляющих большую информацию, чем известные методы. При этом особое значение придается пониманию и использованию качественно новых явлений, что равносильно более высокой аналитической избирательности. Последующая задача состоит в сокращении продолжительности анализа. Это достигается внедрением автоматизации и средств обработки результатов анализа. Однако параллельно с требованием более высокой информационной насыщенности метода возрастают затраты умственного труда и необходимость инструментальной оснащенности лабораторий. [c.41]

    Химическую систему с химико-аналитической точки зрения можно охарактеризовать как свойствами самого вещества, так и параметрами химического процесса [1]. Из методов, основанных на химических реакциях, включая реакции, сопровождающиеся изменением агрегатного состояния, исключительно широкое распространение получили классические методы анализа. Важнейшими предпосылками использования какой-либо химической реакции в аналитических целях являются полнота ее протекания и возможно большая скорость реакции, [c.42]


    Необходимым условием получения надежных результатов является достаточная чувствительность определения ДМ и ДМ . Большинство химико-аналитических методов [c.213]

    При проведении химического анализа используют химические, физико-химические и физические методы в сочетании с химическими, физико-химическими методами разделения и концентрирования элементов. Выбор метода обнаружения или количественного определения компонентов зависит от фазового состояния объекта анализа, его химико-аналитических свойств и способа проведения анализа (мокрым или сухим путем, с разрушением или без разрушения пробы и т.п.). При выборе метода учитывают также требуемую точность определения, чувствительность метода, необходимую скорость проведения анализа, оснащение лаборатории и другие факторы. [c.229]

    Много для развития титримефии сделал немецкий химик и фармацевт Ф. Мор, который ввел в объемный анализ различные технические новинки (весы Мора, зажим Мора, бюретка Мора, пипетка Мора и др.), предложил или усовершенствовал целый ряд титриметрических методик (например, известный метод Мора в аргентометрии) и дал им теоретическое обоснование, синтезировал н ввел в практику анализа двойной сульфат аммония и железа(П) — соль Мора (NH4)2Fe(S04)2 6H20, на1шсал первое систематизированное руководство по титриметрии — Учебник химико-аналитических методов титрования . [c.40]

    При сероводородном методе в группе сульфида аммония выпадают бериллий, алюминий и титан, образующие амфотерные гидроокиси. Эти элементы в периодической системе расположены по диагональному направлению. В кислотно-щелочном методе используется также химико-аналитическое сходство одинаково заряженных катионов, которые и при геохимических процессах выделяются совместно (В. И. Вернадский, И. П. Алимарин), например Ме-+. Такое химико-аналитическое сходство проявляют катионы Mg +, Мп2+, Ре + или Ва + и Еи +, или А1 +, Ре +, 8Ь(П1), В1 +, которые и выделяются вместе — в одних и тех же аналитических группах по кислотно-щелочному методу. [c.191]

    Величина IgPpfi меняется в пределах 2,28—2,43. В эту подгруппу сульфидов включаются MnS, FeS, oS, NiS, ZnS. К ним относится и сульфид ванадила VOS. Все сульфиды подгруппы сернистого аммония окрашены, кроме сульфида цинка (белый). Так как катион хрома (II) обладает сильным восстановительным действием и неустойчив (хотя и образуют черный очень малорастворимый сульфид rS), то здесь рассматриваются катионы хрома (III), хромат- и бихромат-ионы кроме марганца (II), рассматриваются также манганат- и перманганат-ионы. Аналитические свойства хрома (III) объясняются структурой электронейтрального атома (ЗiiЧs ). То же самое наблюдается у меди (И) (3d "4si). Трисульфид хрома черно-коричневый, подвергается гидролизу вследствие меньшей растворимости гидроокиси хрома (III). В табл. 38 сопоставлены основные характеристики катионов этой подгруппы. Все катионы данной подгруппы легко переходят из одной степени окисления в другую, используются при редоксметодах анализа и как катализаторы в кинетических методах. В химико-аналитических реакциях этих ионов сказывается сходство их электронной структуры по горизонтальному направлению. Катионы ярко окрашены и образуют разнообразные комплексные соединения. 8-оксихинолин, который называют органическим сероводородом , дает характерные, ярко окрашенные внутрикомплексные соединения с этими катионами, начиная от титана и до цинка (табл. 38). [c.205]

    Дается описание методической схемы проведения токсикопогических экспериментов на водоемах и в лаборатории. В схему включены различные методы химико-аналитического, биологического и физиологического исследований, дающие во1-можность установить причины гибели рыб и обосновать мероприятия по охране рыбохозяйствеяных водоемов от загрязнений. [c.299]

    Для аналитической химии большое значение имеет положение определяемого элемента в периодической системе. Периодический закон позволяет обосновать различные методы систематического качественного анализа (например, сероводородный, кислотно-щелочной, фосфатный, капельный, дробный, микрокристаллоскопический). На основе периодического закона устанавливают общие закономерности и исключения из них, наблюдающиеся при химико-аналитических реакциях. Химико-аналитические свойства катионов и анионов зависят от атомного номера образующих их элементов, принадлежности к той или иной подгруппе, рядам и семействам. Большое значение для сравнения аналитических свойств ионов имеет равенство их зарядов. Например, Mg (II) и Мп (II) дают хорошорастворимые сульфаты, а Ей (II) и Ва [c.12]

    Поскольку ассортимент химических реактивов аналитического назначения для неорганических материалов к середине 60-х годов превысил 1000 наименований, необходимо было выделить наиболее рациональный ассортимент, достаточный для всей суммы аналитических требований. Проведение такой работы в ИРЕА привело к созданию рационального ассортимента, сыгравшего существенную роль в исиользова-нии химических реактивов и типизации методов химико-аналитического определения катионов в неорганическом анализе. В рациональный ассортимент было включено 185 химических реактивов, применение которых обеспечивало возможность определения 78 элементов с точностью, необ- [c.318]

    Введение отдельного практикума по физическим и физико-химическим методам анализа в курс аналитической химии для сту-дентов-технологов подчеркивает ведущую роль этих методов в аналитической химии. Все большее число возможных принципов анализа реализуется в инструментальных методах, появляются узко специализированные приборы для анализа того или иного конкретного продукта, а также приборы для автоматического контроля химико-технологических процессов. Увеличивается число приборов, предназначенных для анализа комбинированными методами, например в газовых и жидкостных хроматографах применяются датчики, действие которых основано на самых разнообразных физических и физико-химических методах. Все это усложнило выбор методов анализа для практикума и поставило проблему рациональной последовательности подачи материала. [c.6]

    На основании результатов, полученных при обессеривании газойля нефти Среднего Востока методом каталитического гидрирования [64], было высказано предположение, что сернистые соединения исследованного газойля на 30—40% состоят из структур, имеющих в молекуле бензтиофеновое ядро. Наличие характерической полосы для бензтиофена при 9,48 мц в инфракрасном спектре позволило разработать количественный метод определения небольших концентраций бензтиофена в присутствии нафталина при помощи инфракрасной спектроскопии [68]. Точность этого метода иллюстрируется следующим примером. В техническом образце нафталина было определено химико-аналитическим методом содержанием серы, равное 0,30%, что отвечает наличию в смеси примеси 1,26% бензтиофена методом инфракрасной спектроскопии содержание бензтиофена было найдено равным 1,30%. [c.354]

    П. П. Цыб, М. С. Саюн, Химико-аналитические методы определения галлия, 1 1ндия и таллия. ГНТК СМ КазССР, Алма-Ата, 1958, (159 стр.). Описаны весовые, объемные, экстракционные, электрохимические и др. методы определения. [c.485]

    А. М. Дымов. Технический анализ руд и металлов. Металлургиздат, 1949, (483 стр.). Автор описывает экспрессные и арбитражные методы анализа различных материалов металлургического производства. Рассма риваются методы анализа железных, титиноиых и вольфрамовых руд, известняков п шлаков, ферросплавов, чугунов, спе-циал ,иых и обычных сталей. Рассмотрены методы анализа иикеля, медных и алюминиевых снланов и баббитов. В книге, кроме того, излагаются некоторые оби(ие вопросы, связанные с химико-аналитическим контролем производства, способы разложения материала и подготовки проб, а также краткие сведения о 1])изико-химических методах, применяе.мых ири анализе металлов и руд. [c.491]

    За последние 20 лет химико-аналитические методы исследования претерпели существенные изменения. Примерно до 1955 г. в практике преобладали методы анализа мокрым путем, проводимые в лабораториях вручную (например, визуальная колориметрия, объемный анализ, гравиметрия). С 950 по 1960 г. началось внедрение инструменталь- [c.435]

    В 1801 г. издан труд немецкого исс.тедовагеля В. А. Лампадиуса — Руководство по химическому анализу минеральных веществ . В 1821 г. в Германии опубликовано полное по тем временам руководство по аналитической химии — книга К. Пфаффа (1773—1852) Руководство по аналитической химии для химиков, государственных врачей, аптекарей, сельских хозяев и рудознатцев . С тех пор общие руководства по аналитической химии стали публиковаться систематически, особенно — в Германии. Это — получившие больш ю известность книги Руководство по аналитической химии (1829) Г. Розе (1795—1864), Руководство по качественному химическому анализу (1841) и Введение в количественный анализ (1846) К. Р. Фрезениуса (1818—1897), первое руководство по титриметрическому анализу К. Г. Шварца (1824— 1890) — О количественном анализе (1850), Учебник химико-аналитических методов титрования (ч. 1, 1855 г. ч. 2, 1856 г.) Ф. Мора (1806—1879), Научные основы аналитической химии (1894 ) В. Оствальда (1853—1932) и др. [c.33]

    При осаждении применяют 2 н. НС1, так как в концентрированной кислоте указанные хлориды растворяются, образуя комплексные анионы. Все катионы 1В-подгруппы образуют плохо растворимые в воде сульфиды, однако удобнее выделять их вначале в виде хлоридов. Зто упрощает ход анализа и позволяет использовать общие для них групповые химико-аналитические свойства. Для отделения хлорида свинца от других хлоридов используется его сравнительно хорошая растворимость в горячей воде. Полного осаждения свинца соляной кислотой нельзя достичь. При отделении осадка нерастворимых хлоридов часть Pb la как более растворимого попадает в центрифугат. Там РЬ + может быть осажден или в виде PbS (сероводородный метод), или в виде PbSOi (кислотно-щелочной метод). [c.180]


Библиография для Метод химико-аналитический: [c.243]    [c.218]    [c.168]   
Смотреть страницы где упоминается термин Метод химико-аналитический: [c.6]    [c.218]    [c.165]    [c.218]    [c.72]    [c.50]    [c.155]    [c.162]    [c.192]    [c.13]    [c.22]    [c.136]    [c.169]   
Физическая химия силикатов (1962) -- [ c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Метод аналитические



© 2025 chem21.info Реклама на сайте