Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические энтропии

    Об изменении энтропии в химической реакции можно судить по изменению объема системы в ходе реакции. Например, в реакции [c.171]

    В соответствии с изменением типа химической связи и структуры в свойствах бинарных соединений проявляется более или менее отчетливо выраженная периодичность. Об этом, например, свидетельствует характер изменения по периодам и группам стандартной энтропии, температуры плавления, энтальпии и энергии Гиббса образования в зависимости от порядкового номера элемента с положительной степенью окисления (рис. 130), В изменении параметров отчетливо проявляется также вторичная периодичность (рис. 131). [c.247]


    Постулат Планка используется при термодинамическом исследовании химических процессов для вычисления абсолютных значений энтропий абсолютных энтропий) химических соединений—величин, которые имеют большое значение при расчете химических равновесий. [c.98]

    Определение реальных энергий (теплот) гидратации отдельных ионов. Энтропии гидратации ионов. С помощью модельных методов определяются химические энергии сольватации, так как В них не учитывается поверхностный потенциал на границе жидкость— вакуум XI- Поскольку пока величину нельзя ни изме-1)ить, ни рассчитать (она отвечает разности потенциалов между точками, расположенными в двух разных фазах), химическая энергия гидратации определяется с точностью до некоторой неопределенной постоянной. Рекомендуемые разными авторами значения /р10 для воды отличаются на 0,5 В, что может дать ощибку в определении энергии гидратации однозарядного иона порядка БО кДж-моль- . Вероятные значения лежат внутри =Р0,2 В. Многие авторы принимают В. Если это значение от- [c.62]

    Аналогичным образом определяются и вычисляются изменения свободной энергии и энтропии, связанные с химической реакцией. Так, AG определяется как разность между свободной энергией Гиббса продуктов реакции и исходных веществ нри стандартных условиях. Стандартное изменение энтропии AS связано с AG и АН соотношением  [c.44]

    Всякое изменение состояния системы молекул (среднестатистическая функция распределения по уровням энергии) сопровождается стремлением к новому состоянию равновесия (релаксация). Поглощение зв)т<а всегда сопровождается релаксационными процессами, которые могут остановиться в состоянии неустойчивого равновесия (метастабильное состояние). Нахождение вещества в этом состоянии делает его весьма чувствительным к разнообразным трансформациям. В работе [443] показано, что в метастабильном состоянии субстанция склонна к быстрым химическим изменениям. В этой же работе приводятся сведения, что существует прямая пропорциональная связь между константой скорости химической реакции, энергией и энтропией активации и временем релаксации. [c.49]

    Гиббс ввел понятие свободная энергия . (Необходимость введения этого понятия была обусловлена тем, что измерить изменение величины свободной энергии легче, чем измерить изменение энтропии.) Любая химическая реакция сопровождается изменением свободной энергии системы. Изменение теплосодержания строго соответствует уменьшению свободной энергии и увеличению энтропии. Поскольку обычно самопроизвольные реакции сопровождаются выделением теплоты, то теплосодержание системы при протекании таких реакций уменьшается. Однако в некоторых, хотя и считанных случаях изменение свободной энергии и энтропии бывает таким, что теплосодержание системы увеличивается, и тогда самопроизвольная реакция идет с поглощением энергии. [c.113]


    При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения АН в большинстве случаев мала в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера н растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров. [c.33]

    Так как по третьему закону термодинамики энтропия любого химически и физически чистого кристаллического вещества, находящегося в полном внутреннем равновесии, при абсолютном нуле равна нулю, что вполне доказано экспериментально для большинства исследованных неорганических и органических соединений (подробности см. в главе III), то легко показать, что уравнение (49) может быть переписано в следующем виде [c.103]

    Первый член уравнения, dQ T, представляет собой прирост энтропии за счет теплообмена между системой и ее окружением, а второй член уравнения, А( Х/Г, — прирост энтропии вследствие химической реакции. Скорость прироста энтропии в хилшческой реакции, отнесенная к единице объема системы, равна [c.60]

    Это направление в экспериментах и в теории привело к выводу, что определенным химическим реакциям, как и физическим процессам, присуще свойственное только им самопроизвольное направление, приводящее к увеличению энтропии. Однако энтропия представляет собой величину, трудную для непосредственного измерения, поэтому химики начали искать другой, более простой критерий. [c.109]

    Самопроизвольно, т. е. без затраты работы извне, система может переходить только из менее устойчивого состояния в более устойчивое. Из рассмотренного следует, что в химических процессах одно-зремепно действуют две тенденции стремление частиц объединяться за счет прочных связей в более сложные, что уменьшает э н- а л ь п и ю системы, и стремление частиц разъединиться, что у в е-,1ичивает энтропию. Иными словами, проявляется действие двух прямо противоположных факторов — энтальпийного (ДЯ) и энтропийного (TAS). Суммарный эффект Э1их двух противоположных тенденций в процессах, протекаюш их при постоянных Т и р, отражает изменение энергии Гиббса G (или изобарно-изотермического потенциала)  [c.172]

    Значениями энтропии веществ пользуются для установления изменения энтропии системы в результате соответствующих процессов. Так, для химической реакции [c.171]

    Одной из основных идей современной физики и химии является понятие о квантованных состояниях нли квантованных энергетических уровнях. Большое значение этих представлений для химии обусловлено тем, что все равновесные свойства газов могут быть вычислены на основании данных об энергетических уровнях их молекул. К этим свойствам относятся термодинамические величины теплоемкости, энтропии, свободные энергии образования и константы равновесия химических реакций. Во многих случаях величины, вычисленные таким образом, точнее, чем найденные экспериментально в других случаях вычисления являются единственно доступным в настоящее время методом получения необходимых данных, так как проведение соответствующих экспериментальных измерений практически невозможно. [c.292]

    Пользуясь принципом подвижного равновесия (см. стр. 155), нетрудно установить качественное правило смещения химического равновесня с изменением температуры. В соответствии с этим принципом при повышении температуры ЬТ смещение равновесия должно сопровождаться увеличением энтропии так как (8Т)р(А5)т.>0, т. е. химическое равновесие при повышении температуры должно сместиться в сторону эндотермической реакции (в том направлении, в котором протекает эндотермическая реакция), а при понижении температур ы—в том направлении, в котором протекает экзотермическая реакция. [c.304]

    Химические энтропии гидратации вычисляются по уравнению [c.229]

    Рассчитанные по уравнению (Х.133) значения химических энтропий гидратации отдельных ионов приведены в табл. 33. [c.229]

    Вследствие прочности молекулы N2 многие соединения азота эндо-термичны. Кроме того, энтропия их образования отрицательна (N2 — газ). Отсюда молекулярный азот химически малоактивен, а соединения азота термически малоустойчивы и относительно легко разлагаются прн нагревании. Поэтому азот на Земле находится главным образом в свободном состоянии. [c.345]


    Хотя в этой модели вводится энтропия активации, что позволяет учитывать структурные изменения, однако она имеет дело с переходным комплексом, свойства которого не могут быть изучены и проверены независимо от кинетических данных. Так, например, V является здесь средней частотой для переходного состояния и, хотя возможно, что она имеет то же значение, что и V для нормальной молекулы, тем не менее такая эквивалентность только постулируется. Достоинством этой модели является то, что она дает представления о свойствах переходного комплекса и намечает путь, по которому такое представление может привести к установлению связи между молекулярной структурой и химической реакционноспособностью. На практике Н+ можно отождествить с экспериментальной энергией активации, но разделить экспериментально частотный фактор между V и 8= " невоз- [c.225]

    Работа на этом этапе исследований охватывает также измерения и вычисления физико-химических величин (характеризующих исходные вещества, конечные продукты и реакционные системы), необходимых для проектирования процесса. Это термохимические, термодинамические и термокинетические величины, такие как теплота образования, теплоемкость, энтальпия и энтропия, кинетические константы, плотность, вязкость, коэффициенты теплопроводности и диффузии и т. п. Необходимо располагать значениями указанных величин не только для чистых (индивидуальных) реагентов, но и для их смесей, а также изучить равновесие в многофазных системах, участвующих в процессе. [c.9]

    Внутренняя энергия, энтропия, объем и число молей (т. е. масса) — экстенсивные величины, и, таким образом, функции 7, 6, 7 и являются непрерывными линейными. Производные непрерывных линейных функций являются функциями нулевого порядка, следовательно, температура Т, давление р и химический потенциал — интенсивные величины. [c.28]

    В случае химических реакций, также протекающих при постоянных температуре и давлении, Д2 в уравнении (12) эквивалентна изменению свободной энергии реакции, АН — тепловому эффекту реакции при постоянном давлении, а А8 — изменению энтропии. [c.102]

    Из изложенного ясно, что энтропия возрастает при переходе вещества из кристаллического состояния в жидкое и из жидкого в газообразное, при растворении кристаллов, нри расширении газов, при химических взаимодействиях, приводящих к увеличению числа частиц, и прежде всего частиц в газообразном состоянии. Напротив, все процессы, в результате которых упорядоченность системы возрастает (конденсация, полимеризация, сжатие, уменьшение числа частиц), сопровождаются уменьшением энтропии. [c.78]

    Поэтому графит довольно мягок, легко расслаивается, химически несколько активнее алмаза. Плотность графита (2,1—2,5 г/см ) ниже, чем алмаза (3,5 г/см ) энтропия, напротив, у графита больше и составляет 5,74 Дж/град моль. [c.393]

    Простая модель естественного химического процесса представлена в виде изолированной двухфазной системы на рис. 15-2, а. Энтропия системы 5 является функцией не только одного определенного [c.318]

    Рассмотрим систему, состоящую из химических веществ Aj, между которыми могут происходить реакции типа oi.jAj = 0. Пусть температура и давление поддерживаются постоянными. Состояние системы будет самопроизвольно изменяться в сторону общего увеличения энтропии до тех пор, пока не будет достигнуто равновесие и дальнейший прирост энтропии станет невозможным. Если при бесконечно малом изотермическом изменении состояния системы должно быть поглощено количество тепла dq, а прирост энтропии в системе равен dS, то общее изменение энтропии системы и термостата составляет dS — dqlT. Однако [c.47]

    Следовательно, определив теплоемкости вплоть до очень низких температур, а также измерив скрытые теплоты плавления и испарения, можно вычислить энтропию химического соединения в стандартных условиях, пользуясь уравнением (50). Интересующихся деталями подобного расчета мы отсылаем к главе III. [c.103]

    С другой стороны, в главе III (см. параграф 2) было показано, что изменение энтропии любого химического соединения при нагревании его от О до Т может быть вычислено из термохимических данных по уравнению [c.103]

    В этих выражениях для константы скорости химической реакции Ш и Л// имеют физический смысл теплот активации, а Д5 — энтропия акти-нацни. [c.149]

    Аналогичные соотношения автором предложены для вычисления свободной энергии (—Аг ) теплот образования (—ДЯ ), констант химического равновесия — Кр, энтропии [c.226]

    Равновесию гетерогенных систем отвечает равенство химических потенциалов каждого компонента во всех фазах, а также минимальное значение одного из термодинамических потенциалов или максимальное значение энтропии всей системы при соответствующих условиях. Наиболее обычными условиями на практике являются постоянная температура и постоянное давление, поэтому мы будем оценивать равновесие гетерогенных систем по их изобарному потенциалу. [c.347]

    Получив с помощью уравнения (116) изотерму адсорбции, можно ее обработать рассмотренными в главах XVI, XVII и XIX способами и получить, например, методом БЭТ (см. сгр. 454) емкость плотного монослоя и величину удельной поверхности адсорбента, а также получить изменение химического потенциала исследуемого вещества при адсорбции, откуда можно вычислить зависимость коэффициента активности адсорбата от заполнения иоверхности. Из серии хроматограмм, определенных при разных температурах, можно получить соответствующую серию изотерм адсорбции и определить нз них зависимость дифференциальной теплоты адсорбции от заполнения поверхности, дифференциальные энтропии и другие термодинамические характеристики адсорбции при разных заполнениях. Результаты таких газо-хроматографических исследований при благоприятных условиях опыта близки к результатам статических методов. [c.592]

    В связи с этим важное значение приобретают приближенные эмпирические соотношения для энтропий отдельных классов и групп неорганических соединений. Так как во многих из этих соотношений используются значения изменений энтропий, происходящих при химических реакциях, то некоторые сведения об этих изменениях будут даны ниже (стр. 325). [c.101]

    Наличие спина ядра с квантовым числом момента вращения 3 ядра увеличивает число микросостояний молекулы в любом ее энергетическом состоянии в 11(25+1) раз [произведение (2я+1) для всех ядер молекулы]. Энтропия молекулы увеличивается на соответствующее слагаемое, которое, однако, для расчетов изменения энтропии и химических равновесий не имеет значения, так как при любых перемещениях ядер и их сочетаниях в новые молекулы в процессе химической реакции это слагаемое не изменяется. В табличные, так называемые практические величины энтропии, это слагаемое не включается. [c.340]

    Величины 14, V , и , 5,-, и Я,-являются парциальными величинами . Парциальными величинами называются частные производные от экстенсивного свойства фазы (объем, изобарный потенциал, энтропия и др.) по массе компонента при постоянных давлении, температуре и массах остальных компонентов . Так, химический потенциал (х, есть парциальный изобарный потенциал О/. [c.175]

    Вычислив изложенным в предыдущем параграфе методом энтропии участников химической реакции, можно найти изобарный потенциал реакции и константу равновесия рассмотренными ранее способами, например по методу, изложенному в 4 главы IX. Необходимое при этом расчете значение ДЯ берется из калориметрических данных или (в отдельных случаях) вычисляется по энергиям диссоциации участников реакции, найденным из спектральных данных. [c.340]

    Изложенный метод расчета химических равновесий базируется иа постулате Планка (стр. 95), ибо абсолютные энтропии веществ, участвующих в реакции, могут быть найдены лишь при допущении, что энтропия индивидуальных кристаллических веществ при абсолютном нуле равна нулю. Однако нетрудно видеть, что для обоснования метода расчета достаточно утверждение, что нзменепие энтроппи для всех процессов (в том числе и химических реакций), происходящих при абсолютном нуле с участием только кристаллических чистых веществ, не образующих твердых растворов, равно нулю. [c.315]

    Изложенный в предыдущем параграфе метод расчета химических равновесий, носящий название метода абсолютных энтропий, является общим для реакции в любых системах. Будучи ос- [c.317]

    Успехи в изучении строения молекул и развитие квантовой статистической физики привели к созданию нового метода расчета термодинамических функций и, в частности, химических равновесий. Этот метод дает возможность вычислять значения внутренней энергии (сверх нулевой), энтропии и теплоемкости газообразных веществ в широком интервале температур (до 4000— 6000 °С), исходя из величин энергий всех квантованных состояний молекулы, связанных с ее вращением, колебаниями, электронным возбуждением и другими видами движения. Для вычисления энергии каждого из состояний молекулы необходимо знать молекулярные параметры моменты инерции, основные частоты колебания, уровни электронного возбуждения и др. Эти величины находятся главным образом путем изучения и расшифровки молекулярных спектров. Вычисление же термодинамических величин проводится методами квантовой статистической физики. Здесь будут кратко изложены основы статистического метода расчета термодинамических функций. [c.327]

    Энтропия активации. Кроме энергии активации важным условием осуществления химической реакции является ориентация молекул в момент столкновения. Нетрудно заметить, что перераспределению электронной плотности в активном комплексе А2...В2 более всего благоприятствует условие, когда при столкиовении молекулы А2 и 83 ориеичированы, как это показа1Ю на рис. 116, а, тогда как при ори- [c.197]

    В третьем столбце приведены химические энтронии гидратации отдельных ионов (ASQ, отнесенные к -= 0. Химические энтропии гидратадтш [c.70]

    V не зависит от температуры, так что величина Е, которая представляет собой разность энергий активированной частицы и нормальной молекулы (обе в своих самых низших энергетических состояниях), может быть идентифицирована с экспериментальной энергией активации. Разработка этой теории явилась серьезным шагом вперед по сравнению с теорией столкновений, поскольку она рассматривает химическую реакцию с точки зрения моЛеку-лярной структуры. Однако она сильно страдает от использования классиче- кoii модели для структуры молекулы. Одним из следствий этого последнего обстоятельства является то, что все внутренние колебания нормальных и активных частиц должны быть полностью возбужденными, частоты идентичными, и разность энтропии для разных состояний не должна влиять на суммарную константу скорости и поэтому она не входит явно в уравнение для скорости. [c.225]

    Ну — химический потенциал вещества Aj, кал1моль. а — скорость прироста энтропии, кал1 ед. объема град). т=НГ/(—ДЯ) —безразмерная температура в разделе III. 6. [c.61]

    Для гдв 4 Л —В 1п 3,3= —2,5 кал/молъ-град. Эта величина показывает, что если в химической реакции образуется пара А — В, то происходит некоторое уменьшение энтропии. Вероятно, это связано с тем, что при выводе не учитывалась возможность потери внутренних степеней свободы частиц АиВ нри образовании пары А — В. Кроме того, расстояния между А и В в частице А — В, по-видимому, ближе по величине к длинам связи, чем к вап-дер-ваальсовым радиусам или диаметрам соударения. [c.429]

    Таким образом, для нахождения термодинамических функций членов семейств газообразных соединений (типа энтропии 1 °, Ф -потенциала, свободпой энергии и химического потенциала) получается расчетная формула вида [c.227]

    М(под расчетов газовых химических равновесий, при котором используется констанга /, в последнее время уступил место эквивалентному с теоретической точки зрения и более удобному методу абсолютных энтропий, который был пзложс выше. [c.320]


Смотреть страницы где упоминается термин Химические энтропии: [c.62]    [c.191]    [c.31]    [c.316]    [c.149]   
Общая и неорганическая химия (1981) -- [ c.178 , c.186 ]




ПОИСК





Смотрите так же термины и статьи:

Вычисление изменения изобарного потенциала химической реакции по значениям стандартных энтальпий и энтропий

Изменение энтропии при химических реакциях. Энтропия связи

Квазиклассические формулы энтропии газов и химические постоянные

Квантово-статистическое выражение константы равновесия Первые представления об энтропии и о свободной энергии в приложении к учению о химическом равновесии

Наиболее вероятные значения химических теплот, энтропий и энергий гидратации отдельных ионов при бесконечном разбавлении

Направление химических процессов. Энтропия Свободная энергия

Направление химических реакций в изолированной системе. Энтропия

Основные понятия и определения. Скорость возникновения энтропии при химической реакции

Применение энтропии для решения физико-химических задач

Производство энтропии в химической реакции

Расчет изменения энтропии в результате химических реакций

Расчеты изменения энтропии химической реакции

Расчеты химических равновесий с помощью справочных таблиц высокотемпературных составляющих энтальпии и энтропии

Расчеты химических равновесий через стандартные энтропии и теплоты образования компонентов реакции

СТАНДАРТНОЕ ХИМИЧЕСКОЕ СРОДСТВО Стандартное сродство, Стандартные теплоты и стандартные энтропии реакций

Скорость возрастания энтропии и химическое сродство

Теория необратимых процессов. Соотношение Онзагера. Скорость возрастания энтропии в необратимых процессах. Теплопроводность, диффузия и химические реакции, протекающие в неизолированных системах

Термодинамика химическая энтропия

Уравнение второго начала. 58. Максимальная работа и химическое сродство. 59. Уравнение Гельмгольтца. 60. Константа рав новесия и максимальная работа реакции. 61. Направление реакции и условия равновесия. 62. Влияние внешних условий Энтропия и термодинамические потенциалы

Химическая теплота, энтропия и энергия гидратации ионов в бесконечно разбавленных водных растворах при

Химические и нулевая энтропия

Химическое по абсолютным энтропиям

Химическое равновесие по абсолютным энтропия

Химическое сродство и равновесия Энтропия

ЭНТРОПИЯ, СВОБОДНАЯ ЭНЕРГИЯ И ХИМИЧЕСКИЕ РЕАКЦИИ

Энергия, энтропия и химические потенциалы Гиббса

Энтальпия образования химических соединений. Термохимические расче. 29. Энтропия. Направление и предел протекания химических процессов в изолированных системах

Энтропии изменения при химической

Энтропии изменения при химической реакции

Энтропия абсолютная при химической реакции

Энтропия в учении о химическом равновесии Вывод основных уравнений химической статики

Энтропия в химических реакциях

Энтропия и ее изменение при химических процессах и фазовых переходах

Энтропия и истинная химическая постоянная

Энтропия и теория диссоциации химических

Энтропия и химическая интуиция

Энтропия процесса химической реакции



© 2025 chem21.info Реклама на сайте