Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

И с а г у л я н ц. Иониты и их применение в каталитическом синтезе

    Учитывая ведущую роль катализа в химии, можно полагать, что существенный прогресс в области синтеза органических соединений серы невозможен без применения каталитических методов, позволяющих создавать основанные на доступном сырье технологически простые, высокопроизводительные и селективные процессы. Катализ в химии органических соединений серы в течение длительного времени играл значительно меньшую роль, чем в химии других органических веществ. Но в последние десятилетия работы в области катализа реакций с участием серосодержащих соединений были значительно расширены и углублены. В настоящей монографии систематизирован и критически обобщен накопленный в этой области материал. С позиции локализованного взаимодействия реагирующих веществ с индивидуальным атомом или ионом катализатора установлены закономерности протекания ряда каталитических реакций сернистых веществ и определены границы использования катализаторов. [c.292]


    Перспективной и развивающейся областью применения катионных ПАВ является межфазный катализ солями аммония и фосфо-ния при проведении некоторых реакций в двухфазной (водноорганической) среде, например, при синтезе производных карбена, гидролизе, алкилировании, конденсации, окислении. В основе каталитического действия аммониевых и фосфониевых солей лежит их хорошая растворимость в ряде органических растворителей и возможность экстракции из водной фазы в органическую, где они существуют в виде ионных пар. В качестве катализатора чаще всего используются бромиды тетраалкиламмония. Новое направление использования ЧАС в химической технологии представляет значительный практический и теоретический интерес. [c.521]

    В предыдущей главе были рассмотрены некоторые групповые характеристики нефтей. Настоящая глава, как и две следующие, посвящена индивидуальным углеводородам нефтей, т. е. содержит результаты работ, выполненных на молекулярном уровне. Все полученные ниже данные были достигнуты с применением наиболее современных методов исследования, таких, как ГЖХ с использованием капиллярных колонок и программирования температуры и хромато-масс-спектрометрия с компьютерной обработкой и реконструкцией хроматограмм по отдельным характеристическим фрагментным ионам (масс-фрагмептография или масс-хроматография). Широко использовались также спектры ЯМР на ядрах Большинство рассматриваемых далее нефтяных углеводородов было получено также путем встречного синтеза в лаборатории. При этом применялись как обычные методы синтеза, так и каталитический синтез, приводящий к получению хорошо разделяемых смссеп близких по структуре углеводородов, строение которых устанавливалось спектрами ЯМР на ядрах Идентификация любого углеводорода в нефтях считалась доказанной, если пики на хроматограммах (чаще всего использовались две фазы) совпадали, а масс-спектры этого пика и модельного (эталонного) углеводорода были при этом идентичны. [c.34]

    Как и при полимеризации этилена, заслуживает специального рассмотрения возможность применения для синтеза полипропилена растворимых каталитических комплексов. Следует иметь в виду, что в случае охарактеризованных выше гетерогенных каталитических систем активной оказывается лишь небольшая часть ионных связей в каталитическом комплексе, находящихся на поверхности твердой фазы. Например, для образцов Ti lg, используемых в стереоспецифической полимеризации пропилена, число активных центров полимеризации составляет всего несколько единиц на 1000 молекул [c.167]


    Из данных главы II видно, что ацетилен в комплексах и этинильных соединениях различных металлов подвергается сильному воздействию металла, приводящему к существенному изменению физических характеристик и химического поведения молекулы ацетилена. Механизм этого воздействия, как уже отмечалось, описывается двумя типами связи — донорно-акцепторной и дативной, образующимися за счет свободных орбиталей металла и его -электронов. Применение концепции активации кратных связей в каталитических синтезах, основанной на донорно-акцепторном, механизме (участие л-электронов кратной связи и свободных орбиталей различных ионов в образовании я-комплексов) началось с работ Дьюара [424, 428] и получило пшрокое распространение в работах Саломона [666], Шилова [667], Сыркина [433, 668], Вартаняна [669], Вестина [477] и Флида [4—5, 8]. [c.185]

    Одни из путей повьппения эффективности асимметрического синтеза состоит в использовании каталитических количеств хирального агента. Наиболее общим нз известных в настоящее время энантиоселективных каталитических методов является применение хиральньгх комплексов переходных металлов. Известно, что ионы металлов способны катализировать многие органические реакции и путем варьирования природы металла, органических лигандов и хиральных добавок, можно направить пространственное течегше реакции ирактически ио любому нужному пути. [c.696]

    Начнем с проблемы подбора катализаторов, которая нам представляется самой трудной из всех проблем теории катализа и разработана меньше других. Подбор неотделим от представлений о глубоком механизме процессов, который нам недостаточно известен, но несомненно, не один и тот же во всех случаях. Он требует четкого представления о химии и структуре активных контактов, а для применяемых многофазных систем эти данные, как правило, отсутствуют. Он требует также объективной характеристики большого числа контактов разного типа и состава, полученных в сравнимых условиях, а такого материала также нет. Трудность усугубляется тем,что,нарядустакими почти универсальными катализаторами, как галогениды алюминия или ионы водорода в органическом катализе или платина и палладий, встречаются контакты с узкой областью применения, как, например, металлический натрий при полимеризации дивинила или серебро при мягких окислительных реакциях и, наконец, ферменты с их сугубой специфичностью . Мы знаем, с одной стороны, такие реаг ции, как разложение перекиси водорода и озона, ускоряемые почти любым твердым телом, и, с другой стороны, такие реакции, как синтез аммиака или окисление этилена в окись этилена, для которых известны единичные катализаторы. Повидимому, —это отражение многообразия глубоких механизмов катализа, с одной стороны, и существования веществ, поливалентных и моновалентных по своим каталитическим функциям, с другой. [c.10]

    Бутенон для этого случая получался непосредственно в процессе синтеза из бромметилата 1-диметиламинобутан-З-она 17. Изучение отдельных стадий реакции, изображенных на схеме 2, показало, что алкен 18 быстро реагирует с растворителем, так что подвергающиеся алкилированию молекулы вещества возникают не непосредственно путем разложения бромметилата, а из кетоэфира 19. Стадия (2) осуществляется путем присоединения алкоголят-ионов к 18 и становится особенно важной в тех случаях, когда обратная реакция протекает медленно. Эти данные согласуются с тем фактом, что каталитические количества изопропилат-иона в большей степени способствуют образованию продукта 23, чем метилат- и этилат-ионы. Конкуренция за алкоголят-ионы, которые необходимы в обеих стадиях (2) и (3), приводит к большему выходу продукта 23 в случае иаопропилат-ионов, которые легко регенерируются из кетоэфира 19. Процесс осложняется также стадией полимеризации (6), которой способствуют изопропилат-анионы. Здесь может оказаться полезным применение тщательно выбранных катализаторов, которые не присоединяются к алкену, однако катализируют алкилирование [84, 86]. [c.274]

    Кроме того, поликарбоксильные аминокислоты широко используются в разнообразных производствах, где нужно устранить каталитическое действие тех или иных ионов металла, а также в сельском хозяйстве и в медицине. Одним из первых примеров успешного применения поликарбоксильных аминокислот в химической технологии было повышение выхода гидразина при его синтезе за счет окисления аммиака гипохлоритом натрия. Как известно, выход гидразина при этой реакции снижается за счет каталитического разложения гидразина следами ионов меди. Этилендиаминтетрауксусная кислота, образуюш,ая с ионами Си + прочный комплекс, способствует уменьшению этого каталитического эффекта. [c.523]

    Из приведенных данных следует, что некоторые окислы являются бифункциональными катализаторами. Бифункциональность катализатора можно также достичь, используя смеси окислов разного типа. Лучшим примером является система 2пО на АЬОз, успешно применявшаяся для синтеза бутадиена из этанола, где одновременно протекают ионные и гомолитические реакции. В последнее время нашли важное применение бифункциональные катализаторы, состоящие из носителя кислотного типа (АЬОз, алюмосиликаты) с нанесенным на него металлом — катализатором гомолитических реакций (Р(, Рс1). Так, при каталитическом риформинге нефтепродуктов кроме СггОз широко используют Р1 на А Оз (платформинг). [c.162]



Смотреть страницы где упоминается термин И с а г у л я н ц. Иониты и их применение в каталитическом синтезе: [c.4]    [c.285]    [c.179]    [c.241]    [c.179]   
Смотреть главы в:

Нефтехимия, переработка нефти и газа Выпуск 28 -> И с а г у л я н ц. Иониты и их применение в каталитическом синтезе

Нефтехимия, переработка нефти и газа Выпуск 28 -> И с а г у л я н ц. Иониты и их применение в каталитическом синтезе

Нефтехимия, переработка нефти и газа 1960 Выпуск 28 -> И с а г у л я н ц. Иониты и их применение в каталитическом синтезе




ПОИСК





Смотрите так же термины и статьи:

Синтез-газ применение



© 2025 chem21.info Реклама на сайте