Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитического крекинга количество углеводородов

    Ненасыщенные углеводороды керосино-газойлевых фракций исследованы мало. Во фракциях прямой перегонки их количество невелико. Например, во фракции 200—350 °С ромашкинской нефти ненасыщенных углеводородов 2—3%, во фракции 200— 400°С туймазинской нефти — 5,3%. В газойле каталитического крекинга ненасыщенных углеводородов содержится в среднем 10—12%. С повышением температуры кипения фракций этого же газойля содержание ненасыщенных углеводородов увеличивается с 1,5 до 25%. С возрастанием требований к качеству топлив даже незначительная примесь ненасыщенных углеводородов будет оказывать отрицательное влияние на стабильность и другие характеристики топлива. После гидроочистки в прямогонных дистиллятах остаются небольшие количества ненасыщенных углеводородов. Так, дизельные фракции, выкипающие в пределах 200— 360 С, поступают на гидроочистку с йодным числом 5—13. После гидроочистки йодное число равно 2. Если принять, что молекулярный вес такого топлива равен 200 и считать, что ненасыщенные соединения имеют лишь одну двойную связь, то их количество в этом случае достигает 1,5 вес. %, т. е. оно может оказать существенное влияние на стабильность топлива, особенно в термически напряженных условиях эксплуатации, а также при длительном хранении. Весьма важно знать степень отрицательного влияния ненасыщенных углеводородов в зависимости от их строения. Имеются основания считать, что алкены наиболее стабильны, циклены занимают промежуточное положение, а наименее стабильны, [c.31]


    Гринсфельдер, Воге и Гуд [37] при изучении каталитического крекинга отметили, что ири этом образуется относительно большое количество Сд- и С -углеводородов. Они рассматривали этот факт как некоторое подтверждение теории механизма образования ионов карбония при данном процессе. При крекинге парафинов от октана до гептадекана самыми легкими продуктами оказались изобутан и бутан [38], а при промышленном крекинге газойлей при помощи хлористого алюминия с целью получения бензина по данным многих исследователей газ состоит преимущественно из бутана (по-видимому, главным образом изобутана). [c.96]

    Нафтены. Каталитический крекинг нафтеновых углеводородов протекает с большими скоростями. Из нафтенов получается значительное количество бензина при небольшом газообразовании. [c.12]

    Соста в газов каталитического и термического крекинга также различен. При каталитическом крекинге расщепление углеводородов до соединений с одним и двумя углеродными атомами протекает лишь в небольшой степени, так как ионы карбония СН и СгН+ мало устойчивы. Поэтому в газах каталитического крекинга преобладают углеводороды Сз и С4, но в то же время в них содержится больше водорода, чем в газах термического крекинга (типичный состав газов каталитического крекинга приведен на стр. 66). Выход газа при каталитическом крекинге составляет 10—15%. При этом наблюдается примерно такая же картина, как при термическом крекинге с повышением температуры количество газа увеличивается и в нем возрастает содержание низших углеводородов и водорода. Одновременно ускоряется коксообразование, которое прн каталитическом крекинге более.значительно, чем при термическом. [c.59]

    Превращение парафиновых углеводородов (алканов). В сырье, поступающем на каталитический крекинг, содержится большое количество парафиновых углеводородов, поэтому превращения их в присутствии алюмосиликатных катализаторов заслуживают особого внимания. [c.46]

    В табл. 21 приведены выходы отдельных газообразных углеводородов при каталитическом крекинге, включая углеводороды С4. Эти цифры имеют лишь ориентировочное значение. В последующем будет показано влияние состава исходного продукта, условий крекирования и характера катализатора на количество и состав крекинг-газов, образующихся при каталитическом крекинге. [c.26]

    Каталитический крекинг парафиновых углеводородов по сравнению с термическим крекингом дает значительно меньше метана и этана и больше углеводородов С3—Су. Образование большого количества низкокипящих продуктов объясняется тем, что олефины, получающиеся при первичном распаде молекулы, предельного углеводорода, крекируются с гораздо большими скоростями, чем при термическом процессе. [c.251]


    Алкадиены. В высшей степени реакционноспособными оказались алкадиены—бутадиен и изопрен. Совершенно очевидно, что эти соединения, образуясь при каталитическом крекинге различных углеводородов, вступают в дальнейшие реакции. Алкадиены, так же как стирол и инден, образуют большое количество высококипящего продукта и кокса. [c.121]

    Каталитический крекинг. При каталитическом крекинге расщепление углеводородов осуществляется на алюмосиликатах — типичных катализаторах ионных реакций. В их присутствии реакции расщепления идут не по свободнорадикальному механизму, как при термическом крекинге, а по ионному, через промежуточную стадию положительно заряженных карбокатионов. Последние образуются из олефинов, которые получаются хотя бы в небольшом количестве при термическом распаде сырья, и протонов, генерируемых катализатором кислотного типа  [c.39]

    Продукты вторичных процессов, имеющих целью превращение углеводородов (термический и каталитический крекинг, риформинг, алкилирование, изомеризация и полимеризация), содержат такие углеводороды, которые не обнаружены в природной нефти или обнаружены в незначительном количестве. Установлено [1, что около шестидесяти процентов бензинов, получаемых в настоящее время, содержат углеводороды, характерные для вторичных продуктов. [c.11]

    В газойле каталитического крекинга непредельные углеводороды присутствуют в количестве 11,5% н с повышением температуры кипения фракций их содержание возрастает от 1,5 до 25%. [c.470]

    Деасфальтизация пропаном. Соединения асфальтового характера имеют очень высокий молекулярный вес и концентрируются в тех остатках, которые имеют такую высокую температуру кипения, что не могут быть выделены дистилляцией. Вещества смолистого характера имеют молекулярный вес несколько ниже и находятся как в масляных дистиллятах, так и в мазуте. Асфальты и смолы часто в промышленности выделяются из масла отгоном более летучих веществ, и этот процесс экономичен, если сырье содержит незначительное количество ценных высокомолекулярных углеводородов, которые не могут быть отогнаны. Однако во многих случаях желательно в дальнейшей переработке этих остатков получить вязкие масляные дистилляты или тяжелое сырье для каталитического крекинга. Общепринятая сольвентная очистка одним растворителем непригодна, и применяется деасфальтизация пропаном или дуосол-процесс, в котором также используется пропан.  [c.285]

    Экстракты, получаемые при очистке масляных дестиллатов избирательными растворителями, — менее ценное сырье для каталитического крекинга, так как содержат большое количество труднокрекируемых ароматических углеводородов. Во избежание высоких выходов кокса экстракты масляного производства обычно крекируют в смеси с прямогонными соляровыми дестиллатами, к которым они добавляются в небольших количествах. [c.24]

    Экстракты, получаемые при очистке масляных дистиллятов избирательными растворителями, — менее ценное сырье для каталитического крекинга, так как они содержат большое количество трудно крекируемых ароматических углеводородов. Во избежание [c.28]

    Товарные авиационные бензины приготовляют, как известно, путем смешения базового каталитического крекинга и очистки с авиаалкилатом (или техническим изооктаном) и ароматическими углеводородами, в частности алкилированными (изопропилбензол, этилбензол). К этой смеси добавляют этиловую жидкость в количестве 3—4 мл на 1 кг топлива. Для увеличения стабильности авиабензина нри хранении к нему добавляют ингибитор. При доста- [c.223]

    Промышленный каталитический крекинг протекает при давлениях несколько выше атмосферного. Как правило, процесс проводится в присутствии пара таким образом, что парциальное давление нефтяного сырья несколько меньше, чем общее давление. Необходимость проведения реакции при низком давлении объясняется данными, приведенными в табл. 6 и 7. Повышение давления приводит к увеличению отложения кокса и к снижению октанового числа бензина (рис. 2). При низких давлениях образуется большое количество газа, являющегося в значи-> тельной степени ненасыщенным. Содержание олефинов в бензине также высоко. С увеличением давления бромное число бензина постепенно снижается, что указывает на уменьшение содержания олефиновых углеводородов. Однако уменьшение количества олефинов не связано с наблюдаемым [c.147]

    Таким образом, можно отметить следующее в существующих и разрабатываемых процессах термодеструктивной переработки нефтяных остатков (гудрон) в больших количествах образуются тяжелые газойли, которые характеризуются достаточно высоким содержанием парафино-нафтеновых углеводородов и поэтому являются потенциальным сырьем каталитического крекинга. Однако они требуют подготовки с целью снижения коксуемости, а для остатков процессов типа термического крекинга и содержания металлов. [c.108]


    Реакции такого типа преобладают в каталитических крекинге и риформинге (см. гл. IX). Каталитическим дегидрированием циклогексана и метилциклогексана получают, соответственно, бензол и толуол [264, 265]. С подходящими нафтеновыми дистиллятами процесс применим и в промышленности. Полициклические нафтеновые углеводороды можно превратить в отвечающие им ароматические углеводороды нагреванием до 450° С в присутствии хромо-алюминиевого катализатора [266]. При дегидрировании сольвент-экстракта керосина образуются дифенил и некоторое количество метилнафталинов [267], что указывает на присутствие в исходном дистилляте соответствующих нафтенов или их алкилпроизводных. [c.102]

    Давно было замечено [48, 49], что конденсированные ароматические системы образуются при относительно низкой температуре. Было показано, что высокомолекулярная углеводородная часть ромашкинской нефти, не содержавшая заметных количеств конденсированных ароматических ядер, более чем из двух бензольных колец после пропускания ее при 400° С над алюмосиликатным катализатором уже содержала около 17% конденсированных полициклоароматических углеводородов. Около 30 конденсированных полициклоароматических углеводородов образовалось при каталитическом крекинге высокомолекулярных углеводородов хаудагской нефти при 450° С [50]. [c.294]

    Кроме того, при превращениях ароматических углеводородов существенную роль играют реакции конденсации. К этим реакциям наиболее склонны полициклические ароматические углеводороды, в результате чего повышается количество кокса, отлагающегося на катализаторе. Каталитический крекинг смеси углеводородов идет последовательно. При одинаковом примерно числе углеродных атомов в молекуле углеводороды различных рядов по последовательности их превращений на алюмосиликатных катализаторах располагаются в следующем порядке 1) конденсированные ароматические углеводороды, 2) нафтено-ароматические углеводороды и полициклические нафтены, 3) алкилирован-ные бензолы и нафталины, 4) парафины. Влияние ароматических углеводородов с конденсированными циклами на каталитический крекинг парафинов, нафтенов и олефинов изучали Д. И. Сос-кинд и С. И. Обрядчиков [88]. Ими установлено, что конденсированные ароматические углеводороды больше всего тормозят крекинг парафинов меньше —нафтенов и еще меньше олефинов. Так как в дистиллятных фракциях масел преобладают нафтено-ароматические углеводороды, то при низкотемпературном крекинге этих фракций мы вправе ожидать преимущественный крекинг этих углеводородов, сопровождающийся расщеплением нафтеновых колец, частичной их дегидрогенизацией с образованием малокольчатых ароматических углеводородов, имеющих достаточно длинные алкильные цепи. [c.250]

    В качестве сырья используют смеси жидких продуктов нефтяного (60—70 % об.) и каменноугольного (30—40 % об.) происхождения. Из продуктов нефтепереработки наиболее широко применяют термогазойль, зеленое масло, экстракты газойлей каталитического крекинга, а из продуктов коксохимии — антраценовое масло, хризеновую фракцию и пековый дистиллят. Сырье представляет собой углеводородные фракции, выкипающие при температуре выше 200 °С и содержащие значительное количество ароматических углеводородов (60— 90 % масс.). Применяемое сырье в соответствии с требованиями стандартов контролируется по следующим показателям плотность, индекс корреляции, показатель преломления, вязкость, содержание серы, влаги и механических примесей, коксуемость. [c.108]

    Следуюшцй пример показывает, как резко может сказываться различие адсорбционных способвостей отдельных углеводородов при каталитическом крекинге смесей углеводородов. Выше говорилось, что для ароматических углеводородов с метильными группами характерной реакцией является перераспределение метильных групп. В частности, если взять смесь бензола и ксилола, то могут быть получены значительные количества толуола в результате реакции [c.210]

    В одной из первых экспериментальных работ по изучению каталитического крекинга индивидуальных углеводородов Эглофф, Моррелль, Томас и Блох показали, что если подвергать, каталитическому крекингу при 400—450° такой непредельный углеводород, как цетен, то образуется некоторое количество предельных углеводородов. Было высказано предположение, что одновременно с образованием предельных углеводородов должно иметь место образование диолефинов (и притом не обязательно с сопряженной системой связей), ацетиленов и ароматики. С другой стороны, даже небольшое количество углистых отложений на катализаторе могло бы объяснить выделение достаточного количества водорода для гидрогенизации части непредельных. Однако в катализате диолефины, ароматика и т. п. обнаружены не были, и авторы вследствие этого еще более склонялись к точке зрения, что необходимый водород берется именно за счет того, что на катализаторе отлагаются продукты, бедные водородом. [c.153]

    Был изучен [8] каталитический крекинг циклогексена, декалина и тетралина. Обширные работы были посвящены [17, 43] каталитическому крекингу индивидуальных углеводородов, многие из которых претерпевают превращения при гидрировании. Из приводимых ниже данных образования кокса при крекинге моно- и полициклических углеводородов видно, что крекинг полициклических углеводородов сопровождается образованием очень больших количеств кокса (в вес.% на введенное сырье)  [c.217]

    По качеству газы и дистиллятные фракции процессы ТКК бл1[зки к аналогичным продуктам замедленного коксования. Жидкие продукты ТКК, содержащие значительное количество непредельных соединений, ароматических углеводородов, серы и азота, обычно подвергают гидрогенизационной обработке на установках гидроочистки со стационарным слоем катализатора. Во многих случаях такую обработку осуществляют в смеси с прямогонными фракциями, полученными на том же НПЗ. Бензины ТКК часто в смеси с газойлем используют как сырье каталитического крекинга (тритинг-процесс). Тяжелый газойль после гидроочистки, как правило, направляют вместе с прямогонным вакуумным газойлем на каталитический крекинг. [c.78]

    Для получения малосернистых бензиновых фракций, низкоза-стывающих керосиновых и газойлевых фракций и для снижения содержания в вакуумном газойле азота и тяжелых металлов особое внимание следует уделять четкости погоноразделения при перегонке нефти. При коксовании гудрона образуется большое количество многосернистого, богатого тяжелыми металлами кокса, непригодного для металлургической промышленности. В дистиллятах крекинга и коксования содержится много серы и азота, поэтому эти дистилляты надо подвергать глубокому гидрированию. При получении из сернистых нефтей ароматических углеводородов — сырья для нефтехимической промышленности — нужны специальные методы. Перед каталитическим крекингом дистиллятов вакуумной перегонки высокосернистых нефтей, содержащих азот, серу и тяжелые металлы, необходима специальная их обработка, чтобы избежать отравления катализаторов и предотвратить ухудшение качества продуктов крекинга. [c.119]

    Для парафиновых углеводородов характерны реакции распада. Жидкие продукты каталитического крекинга высококппящпх парафиновых углеводородов содержат значительные количества насыщенных углеводородов разветвленного строения, являющихся ценными компонентами автомобильных и авиационных бензинов. Прп термическом крекинге образуется мало таких соединений и много ненасыщенных углеводородов. [c.18]

    В настоящей главе рассматриваются то химические свойства парафинов и циклопарафинов, которые пс вошли в предыдущие главы. В фи-зиологич( ском отношении парафины и циклопарафины, как правило, инертны и не оказывают раздражающего действия. Циклопропан применялся как анестезирующее вещество, концентрация же пропана, необходимая для оказания анестезирующего действия, слишком велика, чтобы его можно было использовать [9]. У рабочих, имеющих дело с парафином в процессе его получения, иногда развивается определенная форма рака, которая рассматривалась как профессиональное заболевание, одпако в настоящее время известно, что прямогонные и особенно крекинговые смазочные масла содержат небольшие количества веществ, которые раздражают кожу и являются канцерогенными [3]. Это справедливо также и в отношении высококипящих масел, получающихся в качестве побочного, продукта при каталитическом крекинге. Канцерогенное действие приписывается некоторым ароматическим углеводородам, содержащимся в этих маслах [23а]. Мягкий парафин, плавящийся приблизительно около 45°, широко применяется как защитное покрытие при лечении тяжелых ожогов [81]. На отсутствие токсического и раздражающего действия тщательно очищенного американского белого медицинского масла указывает широкое применение его в качестве механического слабительного средства. При производстве белого медицинского масла содержащие ароматические кольца углеводороды удаляются путем сульфирования крепкой дымящей серной кислотой. Непредельность таких масел также практически равна нулю (йодные числа, определенные по методу Хэнаса, меньше 1,0). [c.88]

    Крекинг протекает во времени. Чтобы получить целевые продукты в требуемых количествах, сырье необходимо выдержать определенное время при выбранной температуре в присутствии катализатора. В связи с этим важно знать не только выходы продуктов крекинга, т. е. количества образующихся из сырья легких углеводородов и кокса, но и скорости нревращения углеводородов разных рядов. Проведенными псследовапиями установлено, что в условиях каталитического крекинга наиГолее устойчивыми являются нормальные парафиновые углеводороды и ароматическпе углеводороды, молекулы которых не содержат боковых цепей. Углеводороды с тем же числом атомов углерода в молекуле, но других рядов — олефины, нафтены, ароматические уг.певодороды с длинными боковыми цепями — менее устойчивы и крекируются легко. [c.19]

    В процессе каталитического крекинга сырье превращается в бензин, газ, кокс и газойлевые фракции. Целевым продуктом является бензин. Значительная часть остальных продуктов кре-квнга, называемых побочнымп, используется или для получения дополнител1.ных количеств бензина, или для приготовления других товарных продуктов. Например, смесь бутиленов с бутанами (фракция С4) перерабатываю г в авиационный алкилат, а пропилен И избытки олефинов фракции С4 — в полимер-бензин легкий каталитический газойль часто используют как компонент тракторного керосина или дизельного топлива, а тяжелый газойль повторно крекируют с целью увеличения выхода бензина. Легкие- углеводороды крекиш-газов — этан, этилен, пропан я другие — во многих случаях служат сырьем для цроизводства нефтехимических продуктов. [c.5]

    Другой характерной чертой состава нефти, подтверждающей механизм образования иона карбония, является большое количество изопарафинов, обнаруживаемых в большинство бензинов прямой гонки, хотя все без исключения жирные кислоты всегда имеют нормальные углеродные цепи. Бензин каталитического крекинга содержит большое количество изопарафиновых углеводородов. Во многих реакциях перераспределения, исследованных Уайтмором [62], наблюдается замена метильной группы. Гринфельдер, Фог и Гуд считают, что это перераспределение осуществляется заменой метильной группы ионом карбония. [c.90]

    Состав бензинов и других фракций каталитического крекинга определяется способностью катализаторов крекинга (алюмосиликатов) вызывать изомеризацию и диспропорционирование водорода. В результате этих процессов в каталитических крекинг-бензинах преобладают разветвленные парафины, разветвленные олефииы с открытой цепью, алкилциклопентаны, циклопентены и ароматические углеводороды. В табл. 3 и 4 ясно показано, что нормальные парафины от пентана до октана, преобладающие в термических крекинг-бензинах и бензинах прямой гонки из нефти Мид-Континента, в каталитических крекинг-бензинах имеются в относительно небольшом количестве. Из парафинов более всего преобладают разветвленные парафины с одной метильной группой в боковой цепи, такие как метилбутаны и метилпентаны. Обычно алкилциклопентаны [c.50]

    Глазго, Унллингхсм и Росспни [4] опубликовали данные по составу каталитического крекинг-бензина, полученного при так называемом двухкратном нли повторном каталитическом крекииге. В результате применения в зтом случае болое жесткого режима крекинга содержание непредельных углеводородов уменьшается по данным Глазго и других, примерно, до 4% от общего количества бензина сравнительно с. 40% в табл. 3 II 4, а количество изопарафинов и ароматических угловодородов сильно растет. [c.54]

    Для некоторых групп изомерных углеводородов распределение изомеров в каталитических крекинг-бензинах приближается к относительным количествам, рассчитанным для термодинамического равновесия при температурах крекинг-процесса, т. е. от 450 до 500° С. Прежде всего, эТо применимо к различным изомерам олефинов, обладающих большой реакционной способностью в присутствии катализаторов при высоких температурах. Кэди и другие [1] нашли, например, что относительные количества изомерных метилбутенов или метилпентенов в бензине каталитического крекинга соответствовали термодинамическому равновесию при 470° С. Точно так же относительные количества изомеров С или С, ароматических углеводородов в каталитических крекинг-бензинах почти равны рассчитанным для термодинамического равновесия (Штрейф и Россини [8]). Отношение циклогексана к метилциклопентану, установленное для двух бензинов каталитического крекинга, представленных в табл. 3 и 4 (1 6 и 1 8 соотеетственно), мало отклоняется от равновесного (1 10). Для менее реакционноспособных изопарафинов такое соотношение обычно не наблюдается. [c.54]

    Так как указанное различие в анергиях меиее выражено для свободно-радикальЕШх реакций, то можно сделать вывод, что обычно при каталитическом крекинге влияние структуры молекулы на скорость и характер начального разложения больше, чем при термическом. Однако для более глубокого рассмотрения обоих видов крекинга следует принимать во внимание значительные вторичные реакции олефинов в ионных системах, что будет рассмотрено ния е. При каталитическом крекинге вследствие многочисленных перегруппировок в образовавшихся первоначально олефинах, конечный продукт является результатом наложения равновесной смеси вторичных продуктов реакций олефинов на первичные продукты крекинга. В силу этого конечная смесь углеводородов до известной степени не зависит от структуры исходной молекулы. Таким образом, присутствие большого количества олефинов, получаемых, как было сказано выше, при крекинге любого из основных классов углеводородов, может являться и действительно является причиной таких реакций, которые затемняют, по крайней мере частично, влияние структуры на начальные стадии разложения. Вторичные реакции олефинов менее выражены в свободнорадикальных системах и поэтому наблюдается кажущийся парадокс, — конечные продукты каталитического крекинга, особенно полученные при крекинге нефтяных фракций, на первый взгляд, меньше зависят от характера структур в исходном веществе, чем при термическом крекинге. По аналогии с механизмом присоединения протона к олефинам может произойти соединение иона карбония с олефином, что приведет к образованию нового большего иона карбония  [c.120]

    Таким образом ароматизацию, важный фактор повышения октанового числа бензинов каталитического крекинга, можно охарактеризовать, как вторичную реакцию, идущую через стадию полимеризации или конденсации олефинов, получаемых при крекинге различных исходных соединений. Простые циклоолефины С5 и Се, циклонентен и циклогексен 16] образуют значительное количество ароматических углеводородов, но с относнтельио высокой температурой кипения, что может быть результатом быстрой полимеризации или конденсации таких олефинов, с последующей изомеризацией кольца, переносом водорода и крекингом. [c.135]

    Таким образом, расчетные исследования, проведенные с применением модельных подходов механики многофазных сред, лабораторные и промышленные испытания показали возможность и перспективность предотвращения образования фенола в процессе каталитического крекинга путем ввода восстанавливающего агента (углеводородов) в регенерированный катализатор до его контактах сырьем. Данный метод является альтернативным предложенному выше способу введения в сырье каталитического крекинга добавок, ингибирующих окисление, и позволяет полностью предотвратить протекание окислительной конверсии- в процессе каталитического крекинга. В результате происходит не только предотвращение образования фенола и других продуктов окисления, ио и повышение количества и качества целевых продуктов процесса за счет увсличспия доли целевой катали гической конверсии. [c.124]


Смотреть страницы где упоминается термин Каталитического крекинга количество углеводородов: [c.208]    [c.180]    [c.204]    [c.143]    [c.144]    [c.147]    [c.236]    [c.112]   
Углеводороды нефти (1957) -- [ c.387 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитический крекинг Крекинг каталитический

Крекинг каталитический

Крекинг углеводородов



© 2025 chem21.info Реклама на сайте