Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ряды активности в каталитических реакциях

    Изучена активность 14 индивидуальных окислов в реакциях окисления н-бутана и н-бутенов [40, 41, 42]. По каталитической активности в реакции окислительного дегидрирования н-бутана в н-бутены и бутадиен исследованные окислы располагаются в ряд [c.692]

Рис. 89. Зависимость каталитической активности ряда металлои в реакции синтеза аммиака от атомного номера элемента Рис. 89. Зависимость каталитической активности ряда металлои в <a href="/info/158307">реакции синтеза аммиака</a> от <a href="/info/7168">атомного номера</a> элемента

    Каталитическая активность хлорированного окснда алюминия. Хлорированный т -оксид алюминия способен изомеризовать н-бутан в отсутствие платины и в отсутствие водорода (табл. 2.13). Замена водорода гелием в качестве газа-носителя в реакции изомеризации не изменила начальной изомеризующей активности катализатора. Наиболее глубоко изомеризация н-бутана протекала в отсутствие газа-носителя. Присутствие платины в катализаторе несколько снижает его активность в реакции изомеризации н-бутана. Исследования поверхности у- и т -оксида алюминия до и после хлорирования четыреххлористым углеродом различными физико-химическими методами позволили прийти к ряду заключений, которые в свою очередь привели к определенным выводам о природе активности хлорированного т -оксида алюминия. [c.72]

    С другой стороны изучение ферментативных реакций в стационарном режиме имеет ряд существенных недостатков. Наиболее важным из них является то, что стационарная кинетика дает весьма ограниченную информацию о детальном кинетическом механизме ферментативной реакции. Стационарная кинетика, отражая лишь лимитирующие стадии процесса, практически не дает информации о быстрых , нелимитирующих стадиях превращения субстрата в активном центре фермента. Определение элементарных констант скорости многостадийной ферментативной реакции из данных стационарной кинетики не представ-ляется.возможным. Действительно, кинетика каталитической реакции, включающей п промежуточных соединений (схема 5.16), описывается 2 п + 1) константами скорости. Стационарная же скорость этой обратимой реакции независимо от числа промежуточных соединений, принимающих участие в механизме реакции, дается уравнением (см. гл. VI) [c.174]

    Тепловые эффекты каждой из стадий определяются независимым путем, что позволяет в дальнейшем сопоставить каталитическую активность, в некотором ряду катализаторов, полученную экспериментально, с тепловыми эффектами отдельных стадий. Использование этого принципа ограничено каталитическими реакциями, характеризующимися одинаковыми механизмами и малыми изменениями энтропии активации. Условие (П.1) выполняется при предварительном подборе катализаторов для реакции окисления водорода, синтеза аммиака, разложения муравьиной кислоты и т. п. В частности, в реакции окисления водорода в соответствии с условием (II.1) из окисных катализаторов наиболее активна УгОз, из металлов — платина. [c.25]


    В интервале 475- -550°С можно выделить стабильный участок, на котором каталитическая активность этих образцов изменяется лишь на 7%. Интересно отметить, что по активности в реакции перераспределения водорода при 500°С катализаторы располагаются в ряд, обратный ряду активности для реакции скелетной изомеризации  [c.357]

    В работе [90] на примере гидрирования циклопропана исследована удельная каталитическая активность ряда нанесенных и ненанесенных металлических катализаторов и определена активная поверхность металла. В качестве катализаторов использовали Ni, Со, Мо, Rh, Pt и Pd, нанесенные на А Оа, кизельгур и активированный уголь, а также Pt- и Pd-черни. Активность и поверхность катализаторов определяли методом импульсного отравления поверхностных активных центров оксидом углерода. Установлено, что наиболее активными и селективными являются Ni-катализаторы, восстановленные при 360 °С. Показано, что в присутствии Ni, Со, Мо и Rh проходит как гидрогенолиз циклопропана, так и его гидрокрекинг на Pt и Pd крекинг не протекает. По общей активности исследованные катализаторы располагаются в ряд Rh > Ni > Pd > Pt > Мо > Со, по активности в реакции гидрокрекинга получен иной ряд Ni > Со > Мо > Rh > Pt, Pd. Эти результаты показывают, что примененный метод с использованием гидрогенолиза циклопропана в качестве модельной реакции дает возможность быстро и достаточно точно определять удельную активность металлсодержащих катализаторов и поверхность металла. Полученные результаты хорошо согласуются с данными, найденными классическими методами. [c.104]

    Разработана теория оптимального управления каталитическими процессами на основе принципа максимума Понтрягина и прямых вариационных методов. Для каталитических реакций с падающей активностью катализатора проведено качественное исследование оптимальных управлений, разработаны эффективные численные алгоритмы оптимизации и решен ряд промышленно важных задач. [c.4]

    Однако ряд преимуществ проточного метода (простота конструктивного оформления, непрерывность работы, возможность проверки катализатора в условиях, близких к производственным) обеспечили ему широкое применение при изучении каталитических реакций окисления окиси углерода [21], сернистого ангидрида [22], аммиака [23], спиртов [24] и многих других. На рис. 119 дана общая схема проточной установки для определения активности катализатора в процессе окисления сернистого ангидрида [22]. [c.284]

    В работе [22] анализируется целый ряд критериев каталитической активности, такие как константа скорости реакции к, отнесенная к единице поверхности, скорость реакции Я при одном и том же составе реакционной смеси, одинаковой конверсии X и одинаковой температуре, конверсия, достигаемая при заданной температуре, температура, при которой достигается заданная скорость превращения, наконец, энергия активации Е реакции в присутствии катализатора. [c.103]

    Если образование активного комплекса лимитирующей стадии реакции окисления включает образование или разрыв связи кислород— катализатор, то для ряда катализаторов можно ожидать линейную зависимость между энергиями активации реакций окисления и изменением энергии этой связи. Следствием этого должна быть симбатность в изменении каталитической активности в реакциях окисления и гомомолекулярного обмена кислорода. [c.89]

    Еще большие трудности представляет теоретическая трактовка каталитической активности металлов. В ряде случаев металл Б условиях катализа бывает покрыт окисной пленкой и каталитическая реакция протекает в действительности на поверхности [c.473]

    Исследование температурной зависимости конверсии пиперилена на Na-формах цеолитов показало различие их активностей (рис. 1.26). Как видно из рисунка, на цеолитах NaA и NaM гидрирование пиперилена начинается При температуре 60 °С и реакция практически полностью завершается при 160-180 °С. В то же время цеолиты X, Y, эрионит менее активны в гидрировании пиперилена реакция начинается при температурах 120-140 °С и При 200-200 °С достигается 60%-ная конверсия исходного углеводорода. Таким образом, наиболее активными катализаторами гидрирования этого диенового углеводорода являются Na-формы цеолитов А и морденит. Менее активны цеолиты X, У и эрионит. Такой ряд активности не совпадает с последовательностью изменения каталитической активности Na-форм цеолитов в гидрировании олефиновых углеводородов (2-метилбутен-2, циклогексен), когда максимальной активностью обладал NaY. а NaA и NaM были менее активны (см. разд. 1.1), Причина этого, возможно, связана с различным влиянием диффузии молекул реагентов во внутрикристаллических каналах цеолитов на кинетику процессов. [c.42]

    По каталитической активности в реакции окислительного дегидрирования н-бутана в бутилены и бутадиен исследованные оксиды различных металлов могут быть расположены в ряд  [c.54]


    А. В. Топчиевым [14] были исследованы весьма интересные соединения фтора — моно- и дифторофосфорные кислоты. Изу- ченные в сравнении с ортофосфорной и серной кислотой по каталитической активности в реакции алкилирования бензола этиленом и пропиленом катализаторы можно расположить в следующий ряд  [c.23]

    Исследованы обратимая и необратимая адсорбции, а также термодесорбщия этана и метана на порошках №, Со и Р1 [42]. При сравнении полученных результатов с данными по дейтерообмену и кинетикой гидрогенолиза этана наблюдалась корреляция между активностью катализатора в реакции дейтерообмена и значением адсорбционной емкости (Р1 > N1 > Со). Ряд активности в реакции гидрогенолиза этана (N1 > Со > Р1) коррелирует с величинами необратимой адсорбции. Различия в адсорбционной и каталитической активности изученных металлов связывают с термохимическими и геометрическими факторами [42]. [c.96]

    Если строить график зависи.мости активности металлического катализатора от количества контактного яда, содержащегося в системе, то обычно оказывается, что при увеличении содержания яда активность понижается линейно или почти линейно. Такая зависимость сохраняется вплоть до таких степеней отравления, при которых катализатор уже полностью или почти полностью теряет свою активность. При этом на кривых наблюдается перелом, и при дальнейшем увеличении содержания яда активность понижается уже более медленно. Подобного рода кривые были получены автором и его сотрудниками [33] для процессов отравления платиновых и некоторых никелевых катализаторов в целом ряде типичных каталитических реакций, включая жидкофазные гидрирования, разложение перекиси водорода, парофазное окисление двуокиси серы в трехокись воздухом. Общий вид кривых показан на рис. 8 и 9. На рис. 8 показана кривая отравления платинового контакта (на носителе) тиофеном при жидкофазном гидрировании кротоновой кислоты, на рис. 9 — кривая отравления платиновой черни (без носителя) ионами ртути при разложении перекиси водорода. Вероятная причина изменения хода кривых будет разобрана ниже. Здесь можно отметить, что прямолинейный начальный участок наблюдался также Элеем и Райдилом [2] при отравлении хемосорбированным кислородом вольфрама, на котором проводили конверсию параводорода. В ЭТОМ случае прямолинейная зависимость наблюдалась до покрытия кислородом примерно одной трети поверхности вольфрама, после чего начинался излом кривой в сторону оси, по [c.131]

    В качестве природных катализаторов для ряда процессов (кре кинг, этерификация, полимеризация, производство серы из серии стых газов и другие) могут быть использованы боксит, кизельгур железная руда, различные глины [200—206]. Природные катализа торы дешевы, технология их производства сравнительно проста Она включает операции размола, формовки гранул, их активацию Применяют различные способы формовки (экструзию, таблетиро ввние, грануляцию на тарельчатом грануляторе), пригодные для получения гранул из порошкообразных материалов, увлажненных связующими. Активация исходного сырья заключается в удалении из него кислых или щелочных включений длительной обработкой растворо м"щелочи йли кислоты при повышенных Температурах. При активации, как правило, увеличивается поверхность контактной массы. Наибольшее применение в промышленном катализе нашли природные глины монтмориллонит, каолинит, бейделлит, бентониты и др. Они представляют собой смеси различных алюмосиликатов и продуктов их изоморфных замещений, а также содержат песок, известняк, окислы железа, слюду, полевые шпаты и другие примеси. Некоторые природные алюмосиликаты, например, каолин, обладают сравнительно высокой каталитической активностью в реакциях кислотно-основного катализа уже в естественном виде, после сушки и прокаливания. Большинство других требует более глубокой предварительной обработки кислотой при соответствующих оптимальных условиях (температура, концентрация кислоты, продолжительность обработки). В активированных глинах возрастает содержание SiOa, а количество КагО, СаО, MgO, AI2O3 уменьшается. Часто для уменьшения потерь алюминия в глинах к активирующему раствору добавляют сол , алю.мниия [46]. [c.168]

    Известно, что процессы диссоциативной адсорбции с образованием активных радикалов являются промежуточной стадией ряда гетерогенно-каталитических реакций, например, при распаде спиртов. При изучении реакций дегидратации некоторых спиртов в адсорбированном слое было показано, что промежуточные поверхностные формы имеют радикало-цодобный характер. Например, они обладают такими характерными свойствами свободных радикалов, как способность катализировать реакцию пара-орто-цревращения водорода, которая протекает 1П0Д влиянием неспаренного электрона, а также инициировать реакции полимеризации [51]. [c.268]

Рис. 155. Зависимость каталитической активности ряда металлов в реакции 2НзЫ ЗН2 4- N2 (800° С, 1-10 Па) от порядкового номера элемента Рис. 155. Зависимость каталитической активности ряда металлов в реакции 2НзЫ ЗН2 4- N2 (800° С, 1-10 Па) от <a href="/info/7331">порядкового номера</a> элемента
    Во-первых, в них наблюдается стабилизация активных центров при катализе. При этом реакции катализатора, приводящие к дезактивации активных центров, подавляются каталитической реакцией. В качестве активных центров здесь могут выступать состояния, не реализуемые в отсутствие катализа. Это открывает дополнительные возможности для реализации каталитических процессов и позволяет рассматривать новые схемы их механизма. Формирование активной новерхности в ряде процессов должно включать, следовательно, образование таких неустойчивых вне катализа состояний на поверхности катализатора при одновременном воздействии реакционной смеси и каталитической реакции. Когда скорости этих процессов невелики, наблюдается самоакти-вация катализатора в ходе реакции. [c.302]

    При добавлении Ь120 к N 0 на каждый ион замещающий появляется 1 ион и дырочная проводимость (т. е. проводимость р-типа) возрастает (стрелка 1), при добавлении к N10 ОагОз число ионов (осуществляющих проводимость р-типа) уменьшается и проводимость р-типа падает (стрелка ). С работах ряда авторов [см., например Рогинский С. 3., Хим. наука и промышленность, 2, 138 (1957)] были изучены каталитические свойства окислов-полупроводников (N 0, 2пО,ХггОз и др.) и показано существование корреляции между их электронными свойствами и каталитической активностью, а также возможность путем соответствующих добавок изменять в заданном направлении каталитические свойства этих окислов для определенных реакций. Так, например, при окислении СО на N 0 введение в N 0 даже нескольких сотых процента заметно снижает каталитическую активность N 0 (повышает энергию активации изучаемой реакции) 2п0 с добавками, понижающими ее активность по отношению к окислению СО и распаду МгО, имеет повышенную активность для реакции изотопного обмена молекулярного водорода. — Прим. перев. [c.28]

    В ранних работах [16 17] для изучения кинетики изомеризации н-олефинов применяли статический метод. Позднее стали использовать проточный [18] и проточно-циркуляционный [19] методы. Последние два метода наиболее эффективны тогда, когда время реакции невелико, когда возникновение побочных продуктов зависит от времени контакта реагентов с катализатором и когда необходимо ограничить реакционную зону только длиной слоя катализатора. Большинство непрерывных промышленных процессов осуществляется в контактных системах проточного типа. Однако для исследования реакций всеми перечисленными методами необходимы большие количества реагентов, что не всегда удобно в лабораторной практике. В последние годы для изучения ряда каталитических реакций с успехом применяются импульсные установки [20—23]. Преимуществами этих установок являются использование небольших количеств катализатора и исследуемь1х веществ, а также малое время контакта катализатора с углеводородами. Кроме того, импульсный метод позволяет проводить опыты при высокой активности свежего катализатора. [c.45]

    Разработанные и внедренные в ряде стран процессы гидрирования масляных дистиллятов и деасфальтизатов дают возможность в одном каталитическом процессе достичь результатов, получаемых сочетанием глубокой селективной очистки и гидроочистки. Процесс обычно осуществляют под давлением 15— 30 МПа, при температуре 340—420°С, скорости подачи сырья 0,5—1,5 ч и объемном отнощении водородсодержащего газа к сырью 500— 1500. В качестве катализаторов можно применять катализаторы гидроочистки или более активные — сульфидновольфрамовый, ни-кельвольфрамовый на окисноалюминиевом носителе (алюмони-кельвольфрамовый) и др. Для повышения активности применяют промотирующие добавки, придающие катализатору кислотные свойства, — двуокись кремния, галоиды. Введение такой добавки способствует более интенсивному гидрированию азотсодержащих соединений и конденсированных ароматических углеводородов. Благодаря применению высокого давления и активных катализаторов реакции гидрирования протекают весьма глубоко — практически все компоненты, удаляемые при селективной очистке в виде экстракта, превращаются в целевые продукты. Гидрированием под высоким давлением в промышленном масштабе производят базовые высококачественные масла различного назначения индустриальные, турбинные, моторные, гидравлические, веретенные. В зависимости от вида сырья выход масел с одинаковым индексом вязкости при гидрировании равен или несколько выше, чем при селективной очистке. Вырабатываемые масла по эксплуатационным свойствам превосходят масла селективной очистки, особенно по стабильности и, следовательно, по сроку службы. [c.308]

    Как в гомогенном и рментативном катализе, в гетерогенном катализе наблюдаются явления активации, ингибирования и отравления катализаторов. Отравление катализаторов обусловливается блокировкой активных центров за счет образования прочной химической связи между молекулой каталитического яда и поверхностью катализатора. Так, для платины и ряда других металлов ядами являются HaS, H N, Hg b, OS и др. Никелевые катализаторы теряют свою активность в реакциях гидрирования в результате окисления поверхности металла. Большей частью молекулы каталитических ядов, отравляющих переходные металлы, имеют электроны на несвязывающих орбиталях. За счет взаимодействия несвязывающих [c.635]

    Многочисленные экспериментальные и теоретические исследования распшряют и углубляют наши представления о регенерации. Однако несмотря на заметные успехи, на всех уровнях математического моделирования остается ряд важных нерешенных научно-исследовательских задач. На кинетическом уровне требуется доработка и уточнение кинетической модели процесса. Следует также дополнить схему химических превращений стадиями, учитывающими закономерности вьркига коксовых отложений сложного состава, например серосодержащих. Кроме того, в состав катализаторов дегидрирования, риформинга, гидроочистки и других процессов входят соединения переходных и благородных металлов, которые проявляют каталитическую активность в реакциях с участием кислорода. Поэтому факт участия катализатора в процессе окисления также должен быть учтен при создании кинетической модели окислительной регенерации. [c.97]

    Отсылая читателя к монографиям по катализу, ограничимся здесь одним примером. Каталитическая реакция между окисью углерода и водородом, приводящая к получению углеводорода и многих органических соединений (синтез Фишера-Тропша), играет огромную, ни с чем не сравнимую роль для промышленности ряда стран, не имеющих собственной нефти. Исходная смесь газов СО + Нг, получаемая путем подземной газификации угля, приводится в контакт с высокодисперсным адсорбентом, обычно кизельгуром или силикагелем, на который нанесена смесь металлов и их окислов практически — Со — Т10г — МдО для достижения высокой каталитической активности . Реакция протекает по следующей схеме [c.131]

    Синтез этилбензола на цеолитсодержащих катализаторах. Катализаторами алкилирования могут служить декатионированные цеолиты и цеолиты, содержащие металлы I группы. Для повышения активности в цеолиты вводят палладий н другие металлы. Каталитическая активность цеолитов зависит от их кислотности, которая определяется соотношением SiOj/AljOa. Наиболее активными являются цеолиты типа М и Y, нанменее активными — цеолиты типа X. Активность цеолитов возрастает с увеличением степени обмена и валентности катиона, однако цеолиты с трехвалентными катионами менее стабильны, чем с двухвалентными. Активность цеолитов зависит также от величины ионного радиуса катионов. Так, для реакции пропилирования бензола установлен ряд активности BaY < SrY < aY< [c.105]

    Приведенный ряд активности существенно отличается от подобного ряда, приведенного Алхазовым и Амиргулян [10], которые изучали Каталитические свойства оксидов металлов FV периода с целью выбора оптимального катализатора парциального окисления сероводорода. По их данным, каталитическая активность индивидуальных оксидов в реакции прямого селективного окисления сероводорода до элементарной серы при температурах 50-575 К убьшает в следующем ряду 0,0>V,0>Fe,0>Mn,0> u0>Ti0>Zn0>Ni0> rO,. [c.65]

    Соединение ВРз Н3РО4, кроме высокой каталитической активности в реакции алкилирования ароматических углеводородов олефинами, имеет ряд других очень важных цреимуществ и не только по сравнению с молекулярными соединениями фтористого бора, но и с другими, известными катализаторами для этой реакции. С этим катализатором получаются более высокие выходы продуктов моно-алкилирования, что наглядно видно из не1 данны "Ш алкилированию бензола на разных ката-  [c.71]

    Целый ряд исследований, посвяпхенных изучению каталитической активности сферических монокристаллов меди [230], указывает иа то, что ориентация кристаллов действительно приводит к различиям в скоростях каталитических реакций. Реакция водорода с кислородом протекает с на-ибольшей скоростью на участках поверхпости медного шарика, параллельньгх кристаллографическим ПЛОСКОС1ЯМ с индексами 111 . Те части сферической поверхности, которые параллельны плоскостям 100 , сильно разрыхляются под влиянием реакции, хотя скорость реакции на них меньше, чем на частях, параллельных плоскостям 111 , которые при этом остаются гладкими [231]. Создается впечатление, что в тех частях поверхности шарика, которые параллельны плоскостям 100 , атомы как водорода, так и кислорода проникают внутрь -металла на некоторую глубину и реагируют там между собой (см. разделы VII, 6 и 7), в то время как в частях, параллельных плоскостям 111 (т. е. граням 111], которые в действительности отсутствуют), быстрее протекающая реакция препятствует проникновению атомов реагирующих веществ внутрь металла. Между теплотами адсорбции и катал-итической активностью не наблюдается прямого параллелизма. [c.128]

    С целью разработки эффективной каталитической системы для переработки отходов производства хлорбензола протестирован ряд катализаторов - д-элементов, известных своей активностью в реакциях гидрирования (Р(1, N1, Со, Ре, Си, 2п), Показано, что наилучшими показателями по акгивности и селективности обладает нанесенный на 7-А12О3 металлический палладий. Поэтому на данном катализаторе была исследована кинетика последовательных стадий гидрогенолиза, используемая как модель для расчета глубины превращения и состава продуктов. [c.58]

    Контакт наблюдается в каждом каталитическом процессе, но в целом ряде случаев результат реакции не может быть истолкован образованием промежуточных соедивений, в состав которых обязательно входил бы катализатор... Механизм катализа, по представлению Д. И. Менделеева, не требует образования п]эомежуточных продуктов, а зависит от степени напряжения химической системы, какая необходима для химического акта и приобретается в контакте с другим телом... Изменения динамических свойств молекул и их формы в процессе катализа не могут подлежать сомнению, и, следовательно, они-то и являются главной причиной возникновения и течения каталитических реакций... Деформация молекул происходит под действием развиваемого активной поверхностью катализатора силового поля, влияющего на конфигурацию частиц и подготовляющего эти частицы к взаимодействию между собой... (стр. 24).  [c.195]


Смотреть страницы где упоминается термин Ряды активности в каталитических реакциях: [c.120]    [c.129]    [c.274]    [c.182]    [c.92]    [c.13]    [c.13]    [c.65]    [c.58]    [c.635]    [c.295]    [c.250]    [c.188]    [c.2188]    [c.130]    [c.71]    [c.244]   
Смотреть главы в:

Катализ Новые физические методы исследования -> Ряды активности в каталитических реакциях




ПОИСК





Смотрите так же термины и статьи:

Активность каталитическая

Каталитические реакции Реакции

Каталитические реакции Реакции каталитические

Реакции каталитические



© 2025 chem21.info Реклама на сайте