Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм и скорость процесса

    В химической термодинамике основные законы изучаются в приложении к химическим и физико-химическим явлениям. На основе знания этих законов, не прибегая к опыту, решаются задачи по определению условий, при которых данный процесс может быть реализован практически в желаемом направлении и с наибольшим выходом продуктов. Для решения таких вопросов термодинамическим методом необходимо знать только начальное состояние системы и те внешние условия, в которых она находится. Это позволило установить законы многих химических реакций и реализовать реакции в технологии раньше, чем стал известен их механизм. В этом состоит преимущество и вместе с тем некоторая ограниченность термодинамического метода. Обычно в науке и технологии бывает важно не только определить условия, при которых тот илн иной процесс становится возможным, но и иметь достаточно полные данные о механизме и скорости процессов с тем, чтобы научиться ими управлять. Это замечание ни в какой степени не умаляет значения термодинамического метода в науке, роль которого трудно переоценить. [c.78]


    Химическая термодинамика, основные законы которой рассмотрены в предыдущей главе, изучает возможность, направление и пределы самопроизвольного течения химических процессов. Однако механизм и скорость процесса в химической термодинамике не рассматриваются. В то же время представление о скоростях химических реакций и факторах, влияющих на скорость [c.107]

    Механизм и скорость процесса [c.45]

    В настоящее время в Томском политехническом институте изучают механизм и скорости процесса получения жидких топлив из оксида углерода СО и водорода на железооксидных, железомедных и железохромовых катализаторах. [c.35]

    Перенос жидкости. Поскольку капиллярные силы возникают лишь при наличии поверхности раздела жидкой и газовой фаз, условия переноса вещества в капиллярно-пористых телах, полностью и частично заполненных жидкостью, различны. При полном заполнении капилляров жидкостью перенос вещества осуществляется за счет массового движения, обусловленного разностью давлений на концах капилляра [уравнение (V. 64)], и молекулярной диффузии, происходящей за счет различия концентрации по длине капилляра. Относительный вклад переноса, обусловленного массовым движением, уменьшается с уменьшением радиуса капилляров, как это следует из уравнения (V. 64) При отсутствии массового движения жидкости перенос вещества в капиллярно-пористом теле происходит только по диффузионному механизму и скорость процесса определяется законами диффузии. В связи с тормозящим действием твердого скелета капиллярно-пористого тела коэффициенты диффузии оказываются значительно меньше значений для неограниченного объема жидкости. Вследствие кинетической неоднородности пор различного размера коэффициенты диффузии для тел, имеющих капилляры различных размеров, оказываются зависящими от содержания переносимого вещества в твердом теле. Поэтому для количественной оценки кинетики диффузионного переноса используются значения эффективных коэфс )ициентов диффузии, определяемые экспериментально. При этом необходимо, чтобы условия определения соответствовали условиям осуществления рассматриваемого процесса. В капиллярах, частично заполненных жидкостью, ее перемещение обусловливается действием капиллярных сил. [c.436]

    Число факторов, влияющих на механизм и скорость процесса гидратации портландцемента и твердения цементного камня, велико. Важнейшие из них следующие состав и структура клинкера, тонкость его измельчения, химические добавки и температура, среда, в которой происходит твердение. [c.364]


    Механизм и скорость процесса. Температура и концентрация вводимой в процесс серной кислоты сильно отражаются на структуре и физических свойствах продукта. Скорость разложения фосфата зависит от концентрации серной кислоты, состава и степени пересыщения жидкой фазы суперфосфата продуктами реакции. На рис. 4.12 показан общий вид зависимости степени разложения фосфата за определенное время (изохрона) от концентрации исходной серной кислоты при периодических условиях смешения. С увеличением концентрации разбавленных растворов и уменьшением концентрации крепких растворов степень, а следовательно, и скорость разложения фосфата увеличиваются. Однако, начиная с некоторых концентраций кислоты (малых и больших), изменяется состав выделяющегося сульфата кальция и уменьшаются размеры его кристаллов, что вызывает отложение последних на поверхности зерен фосфата и снижение степени разложения. Поэтому полная зависимость степени разложения от концентрации кислоты изображается кривой, которая имеет два максимума и между ними один минимум. Положение максимумов зависит от вида сырья, температуры, времени и др. Скорость и достигаемая степень разложения кислотой низкой концентрации (левый максимум) высоки но с такой кислотой вводится большое количество воды, и вместо твердого продукта получается несхватывающаяся суспензия. [c.152]

    Механизм и скорость процесса. Режимные условия. Температура и концентрация вводимой в процесс серной кислоты сильно отражаются на структуре и физических свойствах продукта. Скорость разложения фосфата зависит от активности кислоты и от степени ее пересыщения продуктами реакции. На рис. 73 показан общий, вид зависимости степени разложения фосфата за определенное время (изохрона) от концентрации исходной серной кислоты. С увеличением концентрации разбавленных растворов [c.165]

    По степени использования железа в порошках были рассчитаны удельный привес д, мг/см ), выражающий отношение общего привеса (Q) к поверхности железного порошка, и другие величины, необходимые для оценки механизма и скорости процесса восстановления окислов железа в присутствии железных порошков. [c.128]

    Исследование реакторов для систем газ—жидкость с целью их эасчета и проектирования ведется в следующих направлениях 10] изучение механизма и скорости процесса массопередачи, осложненного химической реакцией моделирование структуры потоков двухфазной системы оценка влияния продольного перемешивания на эффективность реакторов определение межфазной поверхности, удерживающей способности, перепада давления. Важным вопросом является выбор типа реактора. Сравнение коэффициентов массоотдачи по жидкой фазе для систем газ—жидкость в различных реакторах приведено в табл. 4.1 [10]. [c.83]

    Влияние среды на процесс диспергирования. Среда оказывает влияние на механизм и скорость процесса диспергирования, а также на свойства измельченного вещества. В реальных условиях процесс диспергирования осуществляют или в газовой, или в жидкой среде. Поэтому он сопровождается адсорбцией молекул газов окружающей среды на свежеобразовавшихся поверхностях твердого тела или смачиванием и адгезией жидкости к свежим поверхностям твердого тела. В том и другом случае энергия Гиббса площадей раскола твердого тела от значений оо понизится до какого-то значения а. В частности, в воде более чем вдвое понижается поверхностная энергия кварца и аморфного кремнезема по сравнению с вакуумом. Примерно так же действуют ацетон, бензол, спирт. Этот факт имеет важное значение для процессов измельчения твердых тел. [c.255]

    Накопление значений констант скорости реакций в спра-очниках и компьютерных базах данных расширяет круг тех роцессов, для которых механизм и скорость реакции могут 1ыть установлены на кончике пера . При отсутствии таких анных ответ на вопросы о механизме и скорости процесса дет только эксперимент. [c.91]

    В случае неравновесного потока необходимо учитывать ряд новых процессов передачи химической энергии, которые не учитываются в равновесных потоках или при течении идеального газа. В частности, при взаимодействии неразрушаемой поверхности с потоком существенными оказываются ее каталитические свойства. Несмотря на то, что о значительном влиянии гетерогенной рекомбинации на теплообмен при гиперзвуковых скоростях полета стало известно еще в 50-е годы [17], проблема описания гетерогенных каталитических процессов в гиперзвуковых потоках остается актуальной и в настоящее время. По сравнению с кинетикой гомогенных реакций механизм и скорости процессов, определяющие взаимодействие газа с поверхностью гораздо менее изучены и выражены количественно. Тем не менее, понимание и контроль за этими процессами имеют решающее значение для разработки и создания теплозащитных систем, применяемых при входе космических аппаратов в атмосферу планет. Так, если отличие в тепловых потоках для различных моделей гомогенных химических реакций достигает 25 %, то тепловые потоки, полученные при различных предположениях о каталитических свойствах поверхности, отличаются значительно больше. Тепловой поток к лобовой поверхности аппарата может быть снижен за счет использования некаталитического покрытия в несколько раз на значительной части траектории спуска, включая область максимальных тепловых нагрузок. [c.7]



Смотреть страницы где упоминается термин Механизм и скорость процесса: [c.19]    [c.79]   
Смотреть главы в:

Технология минеральных солей Часть 2 -> Механизм и скорость процесса

Технология минеральных солей Часть 1 Издание 3 -> Механизм и скорость процесса

Технология минеральных солей Ч 2 -> Механизм и скорость процесса

Технология минеральных солей Часть 1 -> Механизм и скорость процесса




ПОИСК





Смотрите так же термины и статьи:

Механизм процесса

Процесс скорость



© 2025 chem21.info Реклама на сайте