Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Устойчивость поверхности раздела жидкой

    Для чистых веществ и смесей можно определить минимальный размер пузырька, устойчивого в данной пересыщенной жидкости-При термодинамическом равновесии необходимо , чтобы химические потенциалы во всех сосуществующих фазах были равны. Химический потенциал компонента в жидкой фазе при любом давлении может быть выражен через химический потенциал этого же компонента в условиях равновесия с какой-либо другой фазой (для той же температуры и поверхности раздела фаз с бесконечным радиусом) при помощи следующего выражения  [c.226]


    Еще одним стабилизатором эмульсии являются твердые частицы, например пыль, попадающая в двигатель или механизм извне, а также твердые продукты глубокого окисления масла или износа трущихся деталей. Объясняется такая роль частиц тем, что при конечном краевом угле между твердой частицей и двумя жидкими фазами на поверхности раздела жидкость — жидкость частица занимает устойчивое положение. Чтобы удалить ее с поверхности раздела, требуется затратить определенную работу, поэтому коалесценция затруднена. Следовательно, одним из эффективных средств борьбы с эмульгируемостью масел при эксплуатации является постоянное и тщательное их фильтрование. [c.194]

    При любой температуре ниже равновесной Гф свободная энергия жидкой фазы больше, чем твердой, что обусловливает возможность самопроизвольного протекания фазового перехода. На, начальных этапах из расплава формируются чрезвычайно малые ассоциаты, которые по своей устойчивости или способности к существованию при данных условиях отличаются от, более крупных ассоциатов, поскольку условия равновесия между твердой и жидкой фазами на искривленной поверхности раздела иные, чем на плоской поверхности. Таким образом, для формирования устойчивого (критического) при данных условиях низкотемпературного ассоциата требуется некоторое переохлаждение жидкости АГ. Равновесие достигается при таком сочетании температуры и радиуса ассоциата, при котором свободная энергия, обусловленная кривизной поверхности, в точности компенсируется переохлаждением жидкости АГ. [c.36]

    Эмульсии [1—5]. Эмульсии — системы из двух жидких фаз, одна из которых дисперсная, или прерывная, а другая фаза не- прерывная, называемая дисперсионной средой. Эмульсии распадаются на два класса. Первый класс — весьма разреженные эмульсии в виде мельчайших капелек одной жидкости, например масла, взвешенных в другой, например в воде. В стабилизации этих эмульсий главную роль играют электрические заряды на поверхности эмульгированной жидкости состояние и свойства поверхностных пленок оказывают меньшее влияние. Эмульсии этого класса приближаются к лиофобным коллоидным системам. Эмульсии второго класса более распространены. В них устойчивость определяется главным образом природой межфазной поверхностной пленки, отделяющей дисперсную фазу от дисперсионной среды. Эту пленку обычно образует третье вещество, отличающееся от обеих объемных фаз и легко растворимое в одной из них. Одна из главных функций этой пленки — понижение межфазного натяжения за счет увеличения адгезии между обеими фазами и, следовательно, уменьшение работы образования поверхности раздела при диспергировании. [c.78]


    Седиментационная устойчивость высокодисперсных коллоидных систем связана с диффузией и броуновским движением, а агрегативная — с изменением степени дисперсности (см. гл. II). Самопроизвольное уменьшение дисперсности особенно наглядно проявляется в системах с жидкими поверхностями раздела фаз. Это так называемая коалесценция, т. е. слияние капелек или пузырьков в эмульсиях, пенах и туманах. В коллоидных системах с твердой дисперсной фазой такое соединение частиц протекает гораздо сложнее. [c.112]

    Типичные микрогетерогенные системы седиментационно неустойчивы частицы их Движутся под действием силы тяжести. Поэтому в них нельзя наблюдать диффузию и осмотические явления. Однако по остальным свойствам микрогетерогенные системы (особенно с жидкой дисперсионной средой) имеют много общего с коллоидными системами. Они так же, как и коллоиды, могут быть получены дисперсионным и конденсационным методами. Микрогетерогенные системы из-за развитой поверхности раздела фаз неустойчивы и термодинамически. Им можно придать агрегативную устойчивость, адсорбируя на их частицах ионы и поверхностноактивные вещества. Наиболее надежно стабилизируют микрогетерогенные системы (так же как и коллоиды) прочные студнеобразные пленки, образуемые мылами и высокополимерами. Исключение составляют системы с газообразной дисперсионной средой (сухие порошки, пыль, дымы, туманы), стабилизацию которых нельзя осуществить подобным путем. [c.133]

    Коллоиднодисперсные системы. Аэрозоли. Дисперсные системы, у которых дисперсионной средой является газ, называются аэрозолями. Диспергированным веществом в аэрозолях могут быть частицы твердого вещества (дым и др.), а также капельки жидкости (туман и др.) Устойчивость аэрозолей объясняется наличием электрического заряда, возникающего на поверхности раздела двух фаз, а, кроме того, каждая частичка твердого или жидкого вещества адсорбирует на своей поверхности газ, в результате чего образуется оболочка, которая препятствует их объединению и, следовательно, быстрому оседанию. [c.168]

    Наличие резко выраженного силового поля поверхности раздела фаз может вызывать изменение состава приповерхностного слоя различные вещества, в зависимости от их природы, могут концентрироваться вблизи поверхности или, наоборот, уходить в объем фаз. Это явление, называемое адсорбцией, приводит к изменению свойств поверхности раздела, в частности поверхностного натяжения. В дисперсных системах с жидкой дисперсионной средой адсорбционные слои на поверхности частиц дисперсной фазы могут существенно изменять условия их взаимодействия и тем самым свойства системы в целом, включая устойчивость. Изучение закономерностей образования, строения и свойств адсорбционных слоев на различных межфазных поверхностях лежит поэтому в основе анализа их роли в управлении устойчивостью и рядом других свойств дисперсных систем. [c.43]

    Кристаллизация является одним из явлений в обширном классе процессов фазовых превращений, играющих очень важную роль в металлургической технологии. Общая теория таких процессов впервые была разработана В. Гиббсом, и затем М. Фольмером. В нашей стране ее плодотворно развивали Я. И. Френкель, Л. Д. Ландау, В. И. Данилов. Согласно этой теории в обычных условиях зародыши новой фазы (например, капли жидкости в пересыщенном паре, пузырьки пара в перегретой жидкости, кристаллики в растворе и т.д.) становятся из-за большой удельной поверхности устойчивыми только после достижения ими определенного критического размера. Пока такой зародыш ие достиг критического размера, его рост сопровождается увеличением энергии Гиббса. Процесс роста зародыша все же возможен благодаря флуктуациям (см. гл. ХП1, 12). Увеличение энергии Гиббса при возникновении и росте зародыша обусловлено тем, что затрачивается энергия на создание поверхности раздела между новой и старой фазами. Пусть молярная энергия Гиббса жидкости а твердой фазы 02. Объем кристаллического зародыша обозначим V, а его поверхность а. Поверхностное натяжение на границе твердой и жидкой фаз равно о. [c.499]

    Корреляция стабилизирующего действия ПАВ с энергетическими характеристиками при адсорбции. При обсуждении стерической стабилизации отмечалось, что в случае стабилизации дисперсий с жидкими поверхностями раздела теория устойчивости должна включать в той или иной форме данные о степени (энергии) закрепления ПАВ на поверхности раздела, т. е. энергетические характеристики стабилизатора. Важность энергетических характеристик ПАВ при адсорбции следует также из всего накопленного опыта по изучению устойчивых эмульсий в сопоставлении со строением ПАВ. [c.164]


    Такие представления объясняют возникновение у разбуриваемых пород тенденции к сохранению устойчивости, но ими нельзя объяснить крепящее действие силикатных растворов. Для этого должен быть дополнительно привлечен механизм силикатирования. В соответствии с ним силикат натрия как соль очень слабой кислоты легко гидролизуется с образованием коллоидального осадка кремнегеля, цементирующего отдельные частицы. В присутствии соли усиливается выпадение на твердую ф зу конденсированного поликремниевого осадка, тем большего, чем выше модуль жидкого стекла, его концентрация и температура. В результате на поверхностях раздела по-вляются скрепляющие конденсационно-кристаллизационные структуры. [c.353]

    Значения х ниже для тех жидкостей, работа выхода злектронов в которые из пленки металла меньше. При более низкой работе выхода электронам легче проникать в окружающую среду, что делает более пологим ход волновой функции вблизи поверхности раздела фаз и соответственно уменьшает значение а . Отметим, что абсолютно устойчивые состояния пленок в работе [34] были получены (путем расчета) именно для случая, когда электроны не могут выходить за пределы пленки (модель бесконечно глубокой потенциальной ямы). Исследование устойчивости пленок может служить важным инструментом в определении работы выхода злектронов из жидкого металла в окружающую среду, так как малые изменения (до 10%) значений работы выхода существенно меняют устойчивость пленок. [c.141]

    Как было показано в гл. 3, полисиликаты или золи с очень небольшими по размеру частицами стабилизировались за счет введения в систему достаточного количества щелочи. Йетс [41] предположил, что стабилизированные щелочью золи устойчивы не только по отношению к гелеобразованию, но также и в термодинамическом понимании. Он указывал, что существуют термодинамические факторы, предотвращающие самопроизвольный рост частиц или их агрегирование и стабилизирующие высокоразвитую поверхность раздела твердое тело—жидкость в случае системы кремнезем—вода. Главным таким фактором, который противодействует изменению свободной энергии, происходящему при уменьшении площади поверхности в системе кремнезем— вода, является сильная адсорбция жидкой фазы, стабилизирующих противоионов или существование каких-либо иных адсорбированных разновидностей на поверхности дисперсной фазы, изменяющая таким образом значение свободной энергии поверхности раздела. [c.431]

    Отсюда следует заключить, что прорыв пленки, разделяющей капельки эмульсий, не зависит от соотношения энергий, определяемых исчезновением метастабильного участка слоя и образованием новой поверхности раздела фаз он наступает, когда в процессе сближения деформированные периферийные зоны становятся очень тонкими, в результате чего может произойти значительное увеличение молекулярной компоненты расклинивающего давления. Исследование капелек эмульсии позволяет установить влияние поверхностного натяжения на устойчивость тонкого жидкого слоя, не повышая концентрации ПАВ в пленке. С малыми количествами ПАВ, которые растворимы только в дисперсной фазе, можно достичь большей степени заполнения адсорбционного слоя исходного эмульгатора и, таким образом, варьировать величину поверхностного натяжения. [c.97]

    Действие больших органических ионов (коллоидных электролитов) на гидрофобные коллоиды должно быть отличным от действия простых ионов. Поверхностная активность больших органических ионов может исключительно резко влиять на распределение ионов в растворе и, следовательно, и на устойчивость коллоидов. Поскольку эти ионы сильно концентрируются на поверхности, то коллоидные частицы будут разряжаться ими при очень низких равновесных концентрациях электролита. Кроме того, ориентированная адсорбция длинноцепочечных ионов на поверхности раздела твердое тело — жидкость, при которой неполярные углеводородные цепи направлены в жидкую среду, приводит не только к потере коллоидными частицами электрического заряда, но и к изменению природы их поверхности за счет ее гидрофобизации, что усиливает склонность золя к коагуляции. Это можно легко установить путем извлечения полученного таким образом коагулята из водной фазы бензолом. [c.261]

    Рассмотрим, каким образом частица может занять устойчивое положение на границе раздела двух жидких фаз (рис. Х1-4). При этом действие сил тяжести вначале учитывать не будем и, кроме того, допустим, что твердая частица является сферической и что и она, и обе жидкие фазы А ъ В имеют одинаковую плотность. Частица может находиться только в фазе А или только в фазе В либо располагаться на поверхности раздела этих фаз. В последнем случае полная свободная энергия системы определяется и узв, а также некоторым уменьщением поверхности раздела жидкость — жидкость. [c.371]

    Чистые жидкости крайне редко образуют пену, тогда как растворы ПАВ почти всегда обладают этой способностью. Особенную устойчивость жидким пленкам придают мыла. В то же время наиболее устойчивые пены образуются, как правило, при резком изменении поверхностного натяжения, а не при его минимальном значении. При добавлении к жидкости противопен-ной присадки она вытесняет ПАВ с поверхности раздела фаз, что приводит к быстрому разрушению пены. [c.194]

    Как указывается в гл. XI, разд. Х1-4А, при конечном краевом угле между твердой частицей и двумя жидкими фазами на поверхности раздела жидкость — жидкость частица занимает устойчивое положение. Чтобы уда.пить ее с поверхности раздела, требуется затратить работу, и поэтому коалесценция затруднена. Кроме того, исходя из величины краевого угла, можно предсказать тип образуемой эмульсии. Как показано на рис, ХП-6, большая часть объема частицы находится во внешней жидкости, которая почти полностью смачивает их. Это вполне согласуется с моделью ориентированных клиньев согласно этой модели жидкость, в которой находится более широкая часть частицы, должна составлять внешнюю фазу. По влиянию поверхностно-активных веществ на краевой угол можно предсказать также их действие на эмульсии. Проводя стабилизацию эмульсий сульфатом бария, Шульман и Лежа [33] показали, что влияние поверхностно-активных веществ действительно определяется величиной краевого угла. [c.397]

    Общие свойства эмульсий. Эмульсиями называются системы, в которых дисперсионная среда и дисперсная фаза находятся в жидком состоянии. Для возможности образования устойчивой эмульсии необходимо, чтобы эти жидкости были практически взаимно нерастворимы или обладали достаточно малой растворимостью. Образование поверхности раздела всегда требует затраты работы, и работа эта тем больше, чем выше поверхностное натяжение на этой поверхности. Поэтому образование эмульсии облегчается и полученная эмульсия становится более устойчивой, если в систему вводятся вещества, которые, адсорбируясь на этой поверхности раздела, уменьшают поверхностное натяжение на ней Такие вещества называют эмульгаторами. [c.528]

    Эмульгаторы — вещества, придающие устойчивость эмульсиям, т. е. являющиеся их стабилизаторами. Действие эмульгаторов обусловлено тем, что, сосредоточиваясь на поверхности разделов двух жидких фаз, они препятствуют обратному слиянию капель. Имеются две группы эмульгаторов, механизм действия которых принципиально различен. К первой, наиболее важной, группе относят ПАВ, растворимые в обеих фазах Эмульсий (или в одной из них), сильно адсорбирующиеся на гра- [c.13]

    В работах А. Б. Таубмана и С. А. Никитиной с сотрудниками показано, что возникновение структурно-механического барьера связано с самопроизвольным образованием ультрамикроэмульсии (УМЭ) на границе раздела двух жидких фаз. Возникновение УМЭ можно легко наблюдать, если наслоить углеводород (масляная фаза) на водный раствор эмульгатора. Спустя некоторое время на границе раздела фаз появляется тонкая молочно-белая прослойка, постепенно утолщающаяся в сторону водной фазы. Это явление — следствие гидродинамической неустойчивости межфазной поверхности углеводород—раствор ПАВ, обусловленной I двусторонним массопереносом через границу раздела (переход в водную фазу вследствие внутримицеллярного растворения, перераспределение эмульгатора между фазами благодаря некоторой растворимости его в углеводороде). В результате возникающей поверхностной турбулентности в обеих фазах вблизи поверхности раздела спонтанно развивается процесс эмульгирования с образованием капелек эмульсии как прямого типа (в водной фазе), так и обратного (в углеводороде). Однако обратная эмульсия, как правило, грубодисперсна, малоустойчива и легко разрушается, тогда как прямая имеет коллоидную степень дисперсности (размер капелек соизмерим с размером мицелл, солюбилизировавших углеводород) и обладает высокой агрегативной устойчивостью. Ультрамикрокапельки ее защищены адсорбционными слоями эмульгатора, которые связывают их в сплошную гелеобразную структуру с заметно выраженной прочностью и другими структурно-механическими свойствами. [c.194]

    Разность потенциалов между способной к передвижению жидкой фазой и тонкой пленкой жидкости, удерживаемой поверхностью раздела, называется электрокинетическим потенциалом или -потен-циалом. Образование двойного электрического слоя на поверхности капелек эмульсии прямого типа Н/В, стабилизированных маслами, в значительной степени обусловливает устойчивость эмульсии. Эти эмульсии, так же как и типичные гидрозоли, подчиняются известному правилу Шульце-Гарди о возможности перезарядки частиц при помощи поливалентных ионов [131. [c.31]

    Процессы поликонденсации можно проводить в расплаве (если мономеры и полимер достаточно устойчивы при температуре плавления полимера), в растворе, в твердой фазе, а также на поверхности раздела двух фаз (несмешивающиеся жидкости, жидкость - твердое вещество и т. д.)- В условиях глубокого вакуума, обеспечивающего удаление низкомолекулярных продуктов реакции, при температуре ниже или выще можно проводить реакцию дополиконденсации (соответственно в твердой или жидкой фазе). [c.273]

    На диаграмме состояний однокомпонентной системы существует лишь одна рфитиче-ская точка, в бинарных системах существуют линии критических точек (критические кривые), при этом возможны критические точки равновесия жидкость - газ, двух жидких фаз, дв)- газовых или твердых фаз. Переход системы из однофазного состояния в двухфазное вне критической точки, и изменение состояния в самой критической точке существенно различаются В первом случае при расслаивании на две фазы переход начинается с появления небольшого количества (зародыша) второй фазы, свойства которой отличаются от свойств первой фазы, что сопровождается выделением или поглощением теплоты ФП. Поскольку возникновение зародышей приводит к появлению поверхности раздела фаз и поверхностной энергии, цля его рождения требуется определенная энергия. Это означает, что такой переход (1-го рола) может начаться лишь при некотором переохлаждении (перегреве) вещества, способствующем появлению устойчивых зародышей новой фазы. [c.21]

    Классификация ПАВ и их применение [7]. По механизму действия на поверхностные свойства растворов ПАВ следует разделить на четыре группы. К первой группе относятся вещества, поверхностно-активные на границе жидкость — газ и прежде всего на границе вода —воздух, но не образующие коллоидных частиц ни в объеме, ни в поверхностном слое. Такими ПАВ являются низкомолекулярные истинно растворимые в воде вещества, например низшие члены гомологических рядов спиртов, кислот и т. п. Понижая поверхностное натяжение воды до 50—30 эрг1см , они облегчают ее растекание по плохо смачиваемым гидрофобным поверхностям в тонкую пленку. Эти вещества также слабые пенообразователи, повышающие устойчивость свободных двусторонних жидких пленок в пене. Поэтому ПАВ первой группы нашли применение во флотационных процессах, в которых пена должна быть неустойчивой, легко разрушающейся. Наиболее широкое применение ПАВ этой группы получили (В качестве пе-ногасителей, резко снижающих устойчивость пены. Пеногасители приобрели значение во всех процессах, где возникновение устойчивых пен нарушает или затрудняет ход процесса, например в т1аровых котлах высокого давления, в промывочных растворах применяющихся в глубоком бурении скважин и др. [c.34]

    ЭМУЛЬГАТОРЫ — вещества, обладающие способностью придавать устойчивость эмульсиям, т. е. являющиеся нх стабилизаторами. Де11ствие Э. вызывается тем, что, сосредоточиваясь на поверхности разделов двух жидких фаз, образующих эмульсию, они препятствуют обратному слиянию (коалесценции) капель, возникающих ири диспергировании одной жидкости в другой (напр., углеводорода в воде). Имеются две группы Э., механизм действия к-рых совершенно различен. К первой, типичной, наиболее важной группе относятся поверхностно-активные вещества (ПАВ), растворимые в обеих фазах эмульсий (или в одной из них), сильно адсорбирующиеся на гран1ще раздела и понижающие вследствие этого межфазное поверхностное натяжение иногда до очень низких значений. Эффективными Э., устойчиво (в течение длительного времени) стабилизующими эмульсии уже при относительно небольших концентрациях, являются высшие длипноцепочечиые гомологи ПАВ — жирные и синтетические мыла, структурированные адсорбционные слои к-рых обладают механич. прочностью илп повышенной вязкостью. Если такие адсорбционные слон образованы не молекулами поверхностно-активного вещества, а их ионами, то устойчивость эмульсий может быть дополнительно повышена электростатическим (отталкивательным) взаимодействием адсорбированных ионов, к-рое, однако, само по себе сильной стабилизации не вызывает. [c.501]

    Коагуляционные структуры возникают в процессе коагуляции (в первом или втором минимуме) за счет сцепления частиц вандерваальсовыми силами через жидкие прослойки или при их вытеснении образование этих структур описывается теорией устойчивости (см. раздел ХШ.З) с учетом структурной составляющей. Структурообразованию способствует мозаичность, неоднородность поверхности, наличие относительно лиофобных участков (для полимеров— гидрофобных участков цепи) на лиофилизированной поверхности частиц. На таких участках и возникают точечные контакты — первичные звенья структуры. [c.259]

    При фракционировании осаждением образец полимолекулярного полимера при постоянной температуре растворяют в жидкости, которая неограниченно растворяет все его фракции. Образуется гомогенный Прозрачный раствор, к которому при тщательном перемешивании постепенно добавляют нерастворитель до появления устойчивого помутнения. Появление мути является первым признаком начала расслоения системы, которое наступает через некоторое Время. При Этом образуются две фазы, разделенные ясно видимой поверхностью раздела. Одна фаза представляет собой наиболее высокомолекулярную фракцию, выпавшую в осадок в результате поР]ижения растворяющей способности среды при добавлении не-расгворителя, иди, как его называют, осадигеля. Эта фаза содержит небольшое количесто обеих жидкостей, в которых высокомолекулярная фракция набухает. Вторая жидкая фаза — это раствор смеси остальных фракций полимера. [c.334]

    Утончение жидких пленок с жидкими поверхностями раздела является слржпым гидродинамическим процессом. Исследование его закономерностей важно не только для понимания причин устойчивости пленок, но и имеет в ряде случаев самостоятельное значение, например в массообменных процессах, протекающих в тонких слоях жидкостей. [c.92]

    Модель. В качестве модели принимается простая двухмерная система из двух полубесконечных несмешиваемых жидких фаз, находящихся в контакте друг с другом через плоскую поверхность раздела. Предположим, что фазы находятся в термическом равновесии концентрация раствора достаточно низка, поэтому свойства жидкости остаются постоянными, а межфазное натяжение достаточно велико, т. е. поверхность раздела фаз остается плоской. Градиент концентрации в обеих фазах принимается линейным, что ведет к стационарному (независимому от времени) переносу вещества. Предположим также, что в начальный момент система неподвижна. Затем в систему вводятся двухмерные бесконечно дгалые возмущения и исследуется ее устойчивость по отношению к ним. Если возмущения гаснут, считают, что система устойчива. Если они возрастают, система нестабильна. [c.214]

    Существуют термодинамические факторы, предотвращающие рост или агрегирование частиц, т. е. противодействующие изменению энергии Гиббса при уменьшении площади поверхности. Такими факторами являются адсорбция жидкой фазы или проти-воионов, изменяющая энергию Гиббса поверхности раздела. В гидрозолях кремнезема энергия поверхности раздела аморфный кремнезем — вода равна 5-10 Дж/м . Если принять, что на 1 нм приходится 8 атомов-кремния, то понижение энергии при уменьшении поверхности может достигать до 3,8 кДж/моль поверхностных атомов кремния. Если коллоидные частицы стабилизированы термодинамически, то равновесное значение энергии должно быть того же порядка. Эта стабилизирующая энергия появляется за счет адсорбции ионов 0Н и противоионов Na" " на поверхности коллоидных частиц. Обеспечение устойчивости золей обычно рассматривают с позиций двойного слоя (теория ДЛФО). [c.105]

    Так как в присутствии НПАВ на поверхности раздела ксилол/вода квазиспонтанное эмульгирование возникает в статических условиях, образование эмульсии осуществлялось без механического перемсшивашш жидких фаз, чтобы исключить его влияние на распределение эмульгатора и связанные с ним эффекты. Таким образом, эмульсии получались нолустатическим методом — путем выдавливания капель ксилола через платиновый капилляр (1 =0,1 мм) в водный раствор ОП-10. Устойчивость полученных эмульсий характеризовалась временел полного расслоения (Т() масляной фазы в центрифуге при 1800 об/м,ин [15]. Для определения содержания ОП-10 в кси-лольиой фазе эмульсия разрушалась центрифугированием при СООО об/мин. на что требовалось около 20 мин. Количество 011-10 в ксилольном растворе определялось по изотерме поверхностного натяжения на границе с 25%-ным водным раствором сульфата аммония, что полностью исключало переход ОП-10 в воду. Количество эмульсин, образующейся в результате квазиспонтанного эмульгирования [c.270]

    Они сконцентрировали свое внимание на устойчивости межфазной поверхности, разделящей два полубесконечных жидких слоя. Хотя деформация поверхности раздела ши также не рассматривалась ( = 0), эти работы открыли путь к настоящему пониманию межфазной конвекции. [c.160]

    Понятие агрегатное состояние ) не включает полную характеристику состояния вещества, поэтому мы будем пользоваться понятием фаза. С точки зрения термодинамики фаза — совокупность всех гомогенных частей системы, одинаковых во всех точках по химическому составу и по всем химическим и физическим свойствахМ и ограниченных от других частей поверхностью раздела. Состояние фазы или превращения в ней можно характеризовать термодинамическими свойствами, такими, как удельный объем, теплоемкость, энтальпия и др. Принято различать три фазовых состояния кристаллическое, жидкое и газообразное. Кристаллическое фазовое состояние— устойчивое состояние твердого тела, характеризующееся дальним трехмерным порядком в расположении атомов, ионов, молекул. Жидкое фазовое состояние, наоборот, характеризуется отсутствием дальнего трехмерного порядка и часто поэтому его называют аморфным фазовым состоянием. [c.72]

    Прямые измерения механической прочности межфазного слоя далеко не всегда подтверждают прямую связь с устойчивостью эмульсий. Теоретические и экспериментальные исследования, выполненные А.Ф. Корецким и П.М. Кругляко-вым, позволили объяснить это несоответствие. Ими показано, что наряду с прочностью межфазной пленки на границе раздела устойчивость глобулы в значительной степени зависит и от сил смачивания, т.е. соотношения сил, препятствующих отрыву частиц эмульгатора в обе жидкие фазы эмульсии по нормали к поверхности раздела. [c.55]


Смотреть страницы где упоминается термин Устойчивость поверхности раздела жидкой: [c.334]    [c.42]    [c.270]    [c.44]   
Проблемы теплообмена (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность раздела фаз

Поверхность разделяющая

Устойчивость поверхности раздела жидкой и паровой фазы при кипении в большом

Устойчивость поверхности раздела жидкой объеме



© 2024 chem21.info Реклама на сайте