Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Заполнение электронных слоев и оболочек в атомах элементов

    Второй электрон на 5й -оболочке появляется только у гафния (2 = 72). А полностью б -орбитали заполняются у атома ртути. Таким образом, десять металлов от лантана до ртути (без лантаноидов) входят в третью десятку элементов вставной декады. Тогда лантаноиды, у которых происходит заселение 4/-орбиталей, рассматриваются как вставка во вставку, так как они вклиниваются между лантаном и гафнием. У таллия начинает заполняться 6/з-оболочка, которая завершается в атоме радона. В незаконченном седьмом периоде у франция начинается, а у радия заканчивается заполнение 75-оболочки. Атом актиния, как и лантана, начинает заполнение -оболочки. Для актиния это будут 6й-орбитали. Актиноиды (90—103) застраивают 5/-оболочку. Так как с ростом порядкового номера разница в энергиях соответствующих орбита-лей делается все меньше (см. рис. 18), в атомах актиноидов происходит своеобразное соревнование в заполнении 5/- и 6 -орбита-лей (табл. 3), энергии которых очень близки. У 104-го элемента курчатовия, открытого в Дубне под руководством акад. Флерова Г. Н., очередной электрон заселяет 6й-оболочку, доводя ее до 6с 2. Поэтому курчатовий является химическим аналогом гафния, что доказано экспериментально. По-видимому, у 105-го элемента (впервые также полученного в лаборатории акад. Флерова в 1969 г.) 6й -оболочка будет состоять из трех электронов, т. е. 105-й элемент должен быть химическим аналогом тантала эка-танта-лом. Особенности заполнения электронных слоев и оболочек атомов Периодической системы  [c.57]


    Ионная связь возникает в результате переноса электрона, как, например, при образовании фторида лития. Атом лития имеет два электрона на первом уровне и один электрон на внешней, или валентной, оболочке потеря одного электрона приводит к том , что у лития остается заполненный внешний слой с двумя электронами. Атом фтора имеет два электрона на первом уровне и семь электронов на внешней, или валентной, оболочке присоединение одного электрона приводит к образованию у фтора заполненной внешней оболочки из восьми электронов. Фторид лития образуется в результате перехода одного электрона от лития к фтору, вследствие чего литий приобретает положительный заряд, а фтор — отрицательный. Электростатическое притяжение между противоположно заряженными ионами называется ионной связью. Такая ионная связь характерна для солей металлов электроположительных элементов), находящихся в левой части периодической системы, с неметаллами (электроотрицательные элементы), расположенными в дальней правой части периодической системы. [c.11]

    Октетная теория исходит из признания, что электронная конфигурация становится исключительно устойчивой, когда ее наружный слой состоит из 8 электронов (октет) или же когда роль наружного слоя выполняет заполненная Л -оболочка Доказательством этого служит существование такой конфигурации у атомов инертных газов (группа 0), отличающихся исключительной химической пассивностью. Чтобы добавить к атому инертного газа электрон или же чтобы удалить с него электрон, необходимо затратить необычайно большое количество энергии. Атомы инертных газов не образуют устойчивых ионов. Атомы элементов всех других групп активны, хотя и в очень различной степени. Ни один из них не имеет конфигурации, характерной для инертного газа. [c.48]

    Сера так же, как и кислород, является типичным элементом VI группы. Ее атом содержит на внешнем валентном слое шесть электронов, которые могут легко отдаваться и также дополняться двумя электронами до заполнения оболочки в соединениях. Сера проявляет степень окисленности —2 и положительную +4, - -6. Природная сера представляет собой желтое вещество, состоящее из кристаллов ромбической системы с плотностью 2,07, плавящееся при температуре 112,8 °С. [c.41]

    Кислород даже по отношению к электроотрицательным элементам всегда двухвалентен, в то время как S, Se и Те могут быть также четырех- и шестивалентными. Эти различия в поведении элементов VI группы объясняются современной теорией строения электронных оболочек атомов. Шесть валентных электронов кислорода находятся в L-слое (с главным квантовым числом п = 2). Для его заполнения необходимо всего два электрона, поэтому атом кислорода может иметь только две ковалентные связи — либо с двумя одновалентными атомами, либо с двухвалентным атомом или радикалом (двойная связь). Для образования большего числа связей потребовались бы орбитали следующего М-слоя, что невозможно, так как их энергия значительно больше. Следовательно, во всех своих соединениях атом кислорода имеет в L-слое восемь электронов (полный октет). У атома S валентные электроны находятся [c.395]


    При заполнении электронных слоев и оболочек атомы подчиняются 1) принципу наименьшей энергии, согласно которому электроны сначала заполняют вакантные орбитали с минимальной энергией 2) принципу Паули 3) правилу Гунда — на вырожденных орбиталях суммарное спиновое число электронов должно быть максимальным. В квантовых ячейках с одинаковой энергией заселение электронами происходит так, чтобы атом имел наибольшее число неспаренных электронов. Это отвечает нормальному состоянию атома (минимум энергии). Рассмотрим связь между электронным строением атомов и положением элементов в короткой 8-клеточной Периодической сис ме (см. форзац). У каждого следующего элемента Периодической системы по сравнению с предыдущим на один электрон больше. Наиболее прост первый период системы, состоящий лишь из двух элементов. У водорода единственный электрон заселяет наинизшую по энергии орбиталь 1 , а у гелия на этой орбитали два электрона с антипарал-лельными спинами. Гелием заканчивается первый период системы и исчерпаны все вариации квантовых чисел при п = I. Таким образом, у атома гелия полностью формируется наиболее близкий к ядру А -слой. [c.40]

    У элемента цезия начинается заполнение шестого слоя, но подуровень Ъй остается свободным. В этом подуровне электрон появляется у атома лантана, но у следующих за лантаном элементов заполняется подуровень 4/, причем электрон с подуровня Ъй переходит на 4f, так что церий имеет электронную конфигурацию [Хе] 4рб5 . Лантаноидов всего 14, так как четвертый слой достраивается в этой последовательности элементов с 18 до 32 электронов. Далее возобновляется заполнение пятого, а затем и шестого слоев. Для последовательности актиноидов характерно заполнение подуровня 5/. По правилу, предложенному В. М. Клечков-ским, заполненпе электронных оболочек происходит так, что электрон, присоединяясь к ионизированному атому элемента, занимает уровень с минимальным значением суммы квантовых чисел п+1. По Клечковскому, заполнение уровней (по мере роста атомного номера) происходит последовательно от групп уровней с меньшим значением суммы п + 1 к группам с большим значением этой суммы, а в пределах каждой (п-Ь/)-группы заполнение происходит от групп с меньшим значением главного квантового числа п и с большим значением орбитального I к подгруппам с большим п и меньшим I. Заполнение уровней группы завершается 5-электронами. После этого происходит переход к следующей (м-Ь/)-группе. Отсюда вытекает, что электронные оболочки должны заполняться в следующем порядке 15 , 25 , 2р , 35 , Зр , 4x2, Зсг °, 4р 552. [c.166]

    По размерам атомов элемента можно косвенно судить об его окислительно-восстанбвительных свойствах, т. е. о том, является ли он металлом или неметаллом. Чем больше атом, тем ближе расположены к ядру электроны и тем их связь с ядром прочнее. Следовательно, такой элемент предпочтительнее будет проявлять окислительные свойства и являться неметаллом, так как небольшие размеры атомов соответствуют элементам концов периодов,- у которых заполнение орбиталей электронами близко к завершению. Ориентировочно можно считать, что элемент является неметаллом, если орбитальный радиус его атомов не превышает 0,1 нм. Связывая металличность свойств простого вещества со строением электронной оболочки его атомов, необходимо отметить, что у атомов металлов в наружном слое не бывает более четырех электронов (за исключением висмута), а у атомов неметаллов — менее пяти электронов (за исключением водорода, бора, углерода и кремния). [c.204]


Смотреть страницы где упоминается термин Заполнение электронных слоев и оболочек в атомах элементов: [c.183]    [c.252]    [c.93]    [c.92]   
Смотреть главы в:

Неорганическая химия -> Заполнение электронных слоев и оболочек в атомах элементов




ПОИСК





Смотрите так же термины и статьи:

Оболочка

Электрон в атомах

Электронная оболочка

Электронные d и оболочки, заполнение

Электронные слои и оболочки



© 2025 chem21.info Реклама на сайте