Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Литий атом, строение

    Атом Лития имеет такое строение  [c.81]

    На рис. 2 схематически изображено строение атомов водорода, гелия и лития. Атом самого легкого элемента — водорода состоит из двух частиц. Вокруг ядра вращается один электрон. Вокруг ядра гелия вращаются уже два электрона, вокруг ядра лития — три. Чем тяжелее атом, тем сложнее его строение. Например, кислород, занимающий восьмое место в периодической системе элементов, имеет восемь электронов два из них вращаются на /С-оболочке, остальные шесть— на -оболочке. Конечно, приведенные модели атомов отражают их строение весьма схематично. На самом деле прост- [c.18]


    Электронное строение атома бериллия в газообразном состоянии — 15 25% Увеличение заряда ядра атома бериллия по сравнению с зарядом ядра атома лития наряду с тем, что 25-электроны только частично экранируют друг друга, приводит к двум эффектам 1) атом Ве имеет металлический радиус только 0,89 А, значительно меньше, чем в случае лития (1,22 А) 2) потенциалы ионизации Ве, 9,32 и 18,21 эв, гораздо большие, чем у Ы (5,39 эе), делают Ве значительно менее электроположительным, если рассматривать его хилшческие свойства в сравнении со свойствами Действительно, не существует никаких кристаллических соединений или растворов, в которых ионы Ве + существовали бы как таковые. Все соединения, строение которых было определено, даже соединения с наиболее электроотрицательными элементами, такие, как ВеО и ВеР.,, по крайней мере частично обладают ковалентным характером связи. Электронное строение атомов других элементов II группы (Mg, Са, 5г, Ва и Ка) подобно строению атома Ве. Однако больший размер этих ато.мов уменьшает влияние заряда ядра на валентные электроны. Так, их потенциалы ионизации ниже, чем у Ве они в основном более электроположительны, а ионная природа их соединений законо-.мерно возрастает в группе сверху вниз. [c.67]

    Справа выписано число неспаренных внешних электронов и формулы соответствующих водородных соединений. Валентность, согласно изложенному, должна равняться этому числу неспаренных электронов. Мы видим, что в полном соответствии с опытными данными водород, литий, фтор и натрий — одновалентны, кислород — двухвалентен, азот — трехвалентен. Атомы инертных газов гелия и неона не образуют молекул, так как все их электроны спарены, поэтому их валентность равна нулю. Противоречие мы наблюдаем лишь для атомов Ве, В, С, для которых возможны и другие валентности (указанные в скобках). Но это противоречие только кажущееся и объясняется тем, что мы привыкли считать, что свободные атомы, образуя химическую связь, обязательно сохраняют строение своих электронных оболочек. Но не существует никаких причин, по которым это должно быть только так атом, образуя связь, уже не является свободным, и его электронная конфигурация может и должна — в большей или меньшей степени) измениться. Поэтому необходимо принимать во снимание те изменения энергии, которые могут возникнуть при образовании химической связи. [c.71]

    Не составляет труда записать волновое уравнение Шрёдингера для атома лития, состоящего из ядра и трех электронов, или атома урана, состоящего из ядра и 92 электронов. Однако, к сожалению, эти дифференциальные уравнения невозможно решить. Нет ничего утешительного в том, что строение атома урана в принципе может быть найдено путем расчетов, если математические (хотя отнюдь не физические) трудности препятствуют получению этого решения. Правда, физики и физикохимики разработали для решения уравнения Шрёдингера множество приближенных методов, основанных на догадках и последовательных приближениях. Проведение последовательных приближений существенно облегчается использованием электронно-вычислительных машин. Однако главное достоинство применения теории Шрёдингера к атому водорода заключается в том, что она позволяет получить ясную качественную картину электронного строения многоэлектронных атомов без проведения дополнительных расчетов. Теория Бора оказалась слишком упрошенной и не смогла дать таких результатов, даже после ее усовершенствования Зом-мерфельдом. [c.374]


    Из приведенных данных видно, что по величине энергии ионизации водород стоит шачительно ближе к фтору, чем к литию, и никакие металлические свойства свободному атому водорода, следовательно, не присущи. Точно так же положительно заряженный ион водорода не имеет ничего общего со свойствами ионов щелочных металлов, поскольку является элементарной частицей — протоном. Вместе с тем в электрохимическом ряду напряжений водород ведет себя как металл. Это объясняется тем, что электрохимический ряд напряжений служит характеристикой атомов металлов в водных растворах (см. гл. V, 11). При ионизации атома водорода в присутствии воды образуется ион гидроксония Н3О+, что сопровождается выделением энергии. Вследствие этого энергия ионизации атома водорода в водном растворе резко снижается и становится близкой к величине энергии ионизации атомов металлов. Заметим, что по некоторым физическим свойствам ион Н3О+ в растворе ведет себя подобно катионам щелочных металлов. Однако эти особенности не относятся к атому или иону водорода и не дают оснований рассматривать его как металл. Сходство строения внешней электронной оболочки атома водорода с внешними электронными оболочками атомов щелочных металлов носит, следовательно, такой же формальный характер, как и однотипность строения внешних электронных оболочек атома гелия и атомов элементов II группы. [c.160]

    Периодический закон. Основной закон химии-Периодический закон был открыт Д. И. Менделеевым в то время, когда атом считался неделимым и о ехо внутреннем строении ничего не было известно. В основу Периодического закона Д. И. Менделеев положил атомные массы (ранее - атомные веса) и химические свойства элементов. Расположив 63 известных в то время элемента в порядке возрастания их атомных масс, Д. И. Менделеев получил естественный ряд химических элементов, в котором он обнаружил периодическую повторяемость химических свойств. Например, свойства типичного металла литий 1л повторялись у элементов натрий Ка и калий К, свойства типичного неметалла фтор Р-у элементов хлор С1, бром Вг, иод I и т.д. [c.33]

    Рассматривая электронное строение атомов различных элементов в порядке возрастания их порядкового номера, мы убедились (с. 28), что атом водорода (1в ) одновалентен, тогда как валентность атома гелия (1з ) равна нулю. Валентность атома лития (ls 2s ) во всех соединениях равна единице, тогда как бериллий (18 2в ) становится двухвалентным благодаря переходу атома в возбужденное состояние (18 28 2р ). Это объясняется тем, что энергия, затрачиваемая на возбуждение атома, с избытком компенсируется при образовании [c.42]

    Реакционная способность азота. Азот характеризуется малой реакционной способностью. Реакция образования LiзN при взаимодействии с литием и превращение в аммиак в присутствии нитрогеназы, являющейся катализатором,— этими примерами, пожалуй, исчерпываются известные реакции, в которые азот вступает при обычной температуре. Нитрогеназа представляет собой внутрикомплекснре соединение и содержит в качестве центрального атома ионы молибдена и железа, во круг которых координируются ионы серусодержащих аминокислот (цистеин, метионин и др.). Считается, что азот присоединяется к такому центральному атому по типу М—N—Ы, и впоследствии из этого промежуточного соединения образуется аммиак, однако подробности строения фермента и механизм его действия пока еще не вполне ясны. При повышенной температуре получаются азотистые производные ряда металлов, в то время как с водородом образуется аммиак, а с кислородом— разнообразные оксиды азота (N0, ЫОз и др.). [c.98]

    Не вдаваясь в подробное изложение результатов применения этого метода для изучения строения атомов, ограничимся рассмотрением некоторых отдельных примеров [2]. Водородный атом имеет только один электрон, и так как энергия связи электрона в. АГ-группе всегда больше, чем в -группе, то этот электрон, несомненно, будет 1 -электроном. Атом следующего элемента, гелия, обладающий двумя электронами, должен, таким образом, иметь конфигурацию 1 . Поскольку. ЙГ-группа в атоме гелия заполнена и третий электрон, соответствующий атому лития, принужден войти в -группу, распределение трех электронов будет отвечать конфигурации 1 22х. Атом бериллия завершает заполнение подгруппы 2 , так что следующий электрон уже входит в группу 2р, образуя при этом структуру 15 2 2/ , соответствующую атому бора, и т. д. [c.16]

    Гипотеза Григоровича. По мнению В. К. Григоровича, расположение атомов в твердых и жидких простых веществах определяется, в основном, их электронным строением [8]. В металлической решетке, где внешние электроны положительных ионов сильно возбуждены вследствие возмущающего действия соседних атомов, сравнительно небольшой прирост температуры может быть достаточным для наступления перекрытия и обменного взаимодействия внешних р оболочек ионов, не перекрывающихся при низких температурах ([8], стр. 202). Так, например, объемноцентрированная кубическая структура натрия, область существования которой простирается от 30 К до температуры плавления, по Григоровичу, может быть объяснена с помощью следующих соображений. Из экспериментальных данных (об оптических свойствах, эффекте Холла и т. д.) известно, что натрий в твердом и жидком состоянии имеет один электрон проводимости на атом. Это означает, что его валентный электрон с Зз уровня переходит в электронный газ. Атомы натрия в конденсированном состоянии имеют внешнюю 25 2р оболочку. Взаимодействие ионов с электронным газом приводит к сближению и перекрыванию р-орбиталей внешних р оболочек ионов, в результате чего возникают обменные / вухэлектронные о-связи, направленные по трем осям прямоугольных координат. Образование шести связей каждым атомом со своими соседями приводит к простой кубической ячейке со свободным объемом в центре, который может быть заполнен таким же ионом. Так, из двух простых кубических под-решеток, энергетически невыгодных, а потому редко реализующихся в металлах, образуется ОЦК структура, одна из трех типичных металлических структур. Гипотеза Григоровича иллюстрируется рис. 43. Точно так же обосновывается возникновение ОЦК структур и у других щелочных металлов. Для лития, ионы которого имеют 15 оболочку, возникновение ОЦК структуры связывается с предположением о переходе 8 электронов на р уровни. [c.175]


    Синтез кремнийорганических мономеров, М., 1961. См. также лит. при ст. Кремнийорганические соединения. ОРГАНОКАРБОРАНЫ,карбораны, в к-рых один или Hj неск. атомов В связаны с орг. I радикалами. Имеют каркасное строение известны полно-стью алкилиров. О. (по ато-мам В и С), как, напр., в соед., ,  [c.415]

    Диспропорционирование силанов в присутствии металлов известно уже давно. Этот тип реакции наблюдался только в тех случаях, когда у атома кремния имелся по крайней мере один атом водорода (см. стр. 319). Тщательные исследования показали, что от атома кремния отщепляется арильная, но не алкильная группа [5]. Показано, что продолжительность реакции и используемый металл оказывают заметное влияние на строение продуктов. При обработке дифенилсилана литием в тетрагидрофуране в течение 84 час с выходом 77% образуется трифенилсилан [98]. При действии на дифенилсилан сплава натрия с калием в эфире в течение 8 час получается 80% тетрафенилсилана и 8% трифенилсилана [4]. Взаимодействие трифенилсилана с литием в тетрагидрофуране в течение 4 и 7,5 час и последующая обработка триметилхлорсиланом приводят к получению 58 и 0% 1, 1, 1-триметил-2,2,2-трифенилдисилана соответственно. Наблюдалось, что дифенилсилан при обработке сплавом натрия с калием давал тетрафенилсилаи. Трифенилсилан реагирует со сплавом натрия с калием, давая трифенилсилилкалий, который при обработке триметилхлорсиланом дает 1,1,1-триметил-2,2,2-трифенилдисилан. С другой стороны. [c.327]

    Определение активного водорода с помощью литий-алюми-иийгидрида проводят в атмосфере азота или водорода. С то-мощью. этого реактива можно определять активный водород в спиртах, фенолах, кислотах, аминах, амидах и кетонах, подвергающихся енолизации [271, 374, 416, 732]. Реакция с литий-алюминийгидридом протекает быстрее, чем с реактивом Гриньяра он взаимодействует и с соединениями, не реагирующими с реактивом Гриньяра вследствие пространственных затруднений. В случае, когда необходимо установить наличие енолизи-рующихся групп В соединениях неизвестного строения или приблизительно оценить влияние пространственных затруднений на активность ато ма водорода, реко.мендуется провести определе- 1ие обоими методами и сравнить результаты. [c.176]

    Фокс И Мартин [3—6] изучили природу этих полос и установили СВЯЗЬ их положения с различными типами строения. В ряде работ, опубликованных в период с 1937 по 1940 г., этим авторам удалось показать, что в случае углеводородов положение максимума поглощения, соответствующего валентным колебаниям С — Н, почти целиком определяется природой самой связи и фактически не зависит от других особенностей строения. Так, группам СНз, СНг и СН насыщенных соединений соответствуют близко расположенные максимумы поглощения двойная свя ь ароматических соединений, образованная углеродом, к которому присоединен атом водорода, вызывает смещение полосы С — Н в сторону больших частот, тогда как при наличии одних лишь ненасыщенных алифатических соединений наблюдается дальнейшее и еще большее ее смещение. При использовании призмы из хлористого натрия с ее сравнительно низкой дисперсией удается только распознать главные классы соединений, но и это представляется ценным. Расмуссен и Браттен [7], например, использовали указанную спектральную область для обнаружения ненасыщенности в олефинах. Между тем дисперсия призмы из фтористого лития уже достаточна для дифференцирования различных типов групп с СН-связями основных классов соединений, так что могут быть отдельно идентифицированы группы СНз, СНг и СН. Максимумы поглощения, соответствующие колебаниям в ненасыщенных и ароматических соединениях, рассматриваются в гл. 3 и 5, а в настоящей главе обсуждаются лишь полосы, которые обусловлены валентными колебаниями С — Н, когда все связи данного атома углерода являются насыщенными. [c.25]

    Таким образом, ясно, что при изучении этой области могут быть получены ценные данные, а при большей доступности призм из фтористого лития применение данной спектральной области будет, вероятно, значительно расширено. Между прочим, следует напомнить, что все эти корреляции были выведены для углеводородов, и присоединение новых групп, например атомов галогенов, к атому углерода, к которому присоединен атом водорода, должно приводить к изменению частот. Так, ряд насыщенных гало-генпроизводных углеводородов поглощает в области 3090— ЗОЮ сл 1, что обусловлено смещением полос СН под влиянием атома галогена. Например, цис- и транс-дихлорэти-лены поглощают при 3085 слбромистый метил и подпетый метил — при 3058 сл и хлористый метилен — при 3049 сл 1. Фокс и Мартин [261 подчеркивают, что даже в случае нормальных углеводородов необходимо основываться на исследовании молекул, близких по строению канализируемым. Изменения полос поглощения = СН при [c.67]

    На рис. V, 4 показана зависимость теплоемкости (Ср) для частиц различного рода. Атомы инертных газов и ионы, отвечающие им по структуре, в пределах температур до 6000° К за немногими исключениями сохраняют постоянное значение Ср = =4,97 кал град г-атом) [или кал (град г-ион)]. Частицы с другим строением электронных оболочек обладают обычно более низкими уровнями возбуждения. Их теплоемкость отклоняется от значения 4 97 кал град моль) уже при более низких температурах. На рйс. VI, 4, приведены некоторые характерные примеры таких частиц. Так, у атомов элементов подгруппы лития обнаруживаются в рассматриваемом пределе температур значительные отклонения Ср от указанного предельного значения, причем для Сз эти отклонения становятся заметными начиная с 1500° К, для КЬ и К —с 1700° К, для N3 —с 2100° К и для —с 1800° К. Это, естественно, приводит к усложнению зависимости от температуры и других термодинамических функций этих элементов. Поэтому процессы ионизации атомов Ы—Сз и процессы диссоциации на атомы двухатомных молекул этих элементов существенно отклоняются от однотипности уже при умеренно высоких температурах. Вещества неоднотипные (например, Ыа, Мо, Ре, РЬ, 51) имеют [c.176]

    Как мы отмечали в 1938 г., химическая формула соединения не может характеризовать подлинный состав координационной сферы —для этого необходимо знание строения этой координационной сферы (например, [МПО4]), тем более, что оно вполне может изменяться с заменой других, находящихся в решётке, структурных узлов (например, атома натрия на атом серебра или лития в структурах перманганатов и т. н.) и с переменой температуры и давления, и в присутствии следов нримесей и т. д. [c.614]

    Из многочисленных исследований реакций литий- и магнийоргани-чеоких соединений с пероксидами лишь небольшая часть работ посвящена изучению кинетики процесс . В работах [54, 66,87, 88] исследована кинетика реакций литийалкилов (А1к = Е1, Рг, п- и г-Ви, Ат) с пероксидами трет-бутила, кумила, трет-амила и несимметричными алкил-трет-бутилпероксидами (табл. 1). Реакции при обычных условиях в растворе гептана протекают с умеренной скоростью и имеют первый кинетический порядок оо каждому из реагентов. Литийалкилы изостроения кинетически более > активны, чем их аналоги нормального строения. Увеличение пространственных препятствий в пероксисоеди-нениях вызывает уменьшение скорости реакций. В системе бутиллитий— алкил-трет-бутилпероксид реакционная способность последнего определяется индукционяы М эффектом алкильного заместителя [66]. [c.11]

    Заполнение энергетических уровней. Энергия электрона в атоме вообще зависит от квантовых чисел п и I. Чем больше электронов в атоме, тем поле, в котором находится электрон, больше отличается от чисто кулоновского и тем отчетливее эта зависимость. В результате заполнение уровней происходит с некоторым отклонением от последовательности, которую можно было бы ожидать (сначала заполняется слой с п=1, потом с п=2, п=3 и т. д.). В действительности, от водорода до гелия заполняется слой п= и атом гелия имеет строение 15 . Затем начинается заполнение слоя п = 2. У лития в этом слое один х-электрон 15 25. У бериллия таких электронов два Ве ls 2s2. Далее заполняются р-орбитали. В атоме бора один р-электрон В 8 2з 2р. У неона нх уже шесть Ме 152252рб Слой п=2 полностью укомплектован. У натрия начинается заполнение слоя п = 3 N3 15 25 2р 3з. У аргона в этом слое восемь электронов Аг 1з 2з 2р 3з 3р . Энергетический уровень 45 лежит ниже, чем уровень за, который должен был бы заполняться у элемента, следующего за аргоном. Поэтому атом калия имеет строение [c.165]


Смотреть страницы где упоминается термин Литий атом, строение: [c.79]    [c.374]    [c.72]    [c.90]    [c.128]    [c.285]    [c.72]    [c.19]    [c.435]    [c.19]    [c.92]   
Общая и неорганическая химия (1981) -- [ c.82 ]

Справочник по общей и неорганической химии (1997) -- [ c.36 , c.39 ]

Основы общей химии Т 1 (1965) -- [ c.76 , c.77 ]

Основы общей химии Том 3 (1970) -- [ c.12 ]

Основы общей химии том №1 (1965) -- [ c.76 , c.77 ]




ПОИСК





Смотрите так же термины и статьи:

Атом лития

Атомов строение



© 2025 chem21.info Реклама на сайте