Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общая характеристика кинетики полимеризации

    ОБЩАЯ ХАРАКТЕРИСТИКА КИНЕТИКИ ПОЛИМЕРИЗАЦИИ [c.10]

    Благодаря этому оба типа ионных процессов, несмотря па противоположный заряд растущих цепей, имеют общие черты. Это проявляется в существенном влиянии полярности среды на кинетику полимеризации и в зависимости скорости элементарных стадий процесса и микроструктуры полимера от природы противоиона. Известная аналогия между катионной и анионной полимеризацией имеется и в другом отношении, а именно, в возможности полного исключения реакций обрыва, что в свою очередь приводит к близости кинетики процесса в определенных системах анионного и катионного характера. Б то же время различие в заряде активных центров обусловливает избирательную способность многих мономеров полимеризоваться только по одному из двух ионных механизмов. Склонность к анионной полимеризации типична для мономеров ряда СН2=СНХ, содержащих заместители X, понижающие электронную плотность у двойной связи, например КОз, СК, СООК, СН=СН2. В наибольшей степени к анионной полимеризации способны мономеры, содержащие два подобных заместителя, например СН2=С(СК)2 или СН2=С(М02)з. Анионная полимеризация возможна также для насыщенных карбонильных производных и для ряда циклических соединений — окисей, лактонов и др. Инициаторами анионной полимеризации являются щелочные металлы, некоторые их органические и неорганические производные (металлалкилы, алкоксиды, амиды и др.), а также аналогичные соединения металлов II группы. Заключение об анионной природе активных центров основывается не только на качественных соображениях, но и на количественном анализе экспериментальных данных с помощью правила Гаммета. Это правило связывает значения констант скоростей реакци производных бензола с характеристиками их заместителей. Оно формулируется в виде уравнения [c.336]


    Твердофазная полимеризация пока не имеет единой классической теории. Экспериментальные данные позволяют предсказать механизм реакции, влияние физико-химических характеристик твердого тела на кинетику полимеризации и структуру полимера, однако для каждого мономера или, в лучшем случае, группы иономеров, объединенной общими признаками строения и кристаллографических параметров, эти вопросы пока решаются в отдельности и разнообразными методами. [c.54]

    Большое разнообразие мономеров, растворителей и инициаторов, используемых в анионных процессах, и, следовательно, существенное различие в характере активных центров в разных системах обусловливает индивидуальность конкретных реакций анионной полимеризации. Детальный механизм и кинетические схемы процессов в анионных системах, отличающихся хотя бы одним из компонентов (например, только природой реакционной среды или только типом инициатора), могут значительно различаться. Следствия таких различий отражаются на общей эффективности процесса, на молекулярно-весовых характеристиках полимеров и их строении. Этой особенностью процессов анионной полимеризации обусловлено построение данной главы. После общей характеристики анионных инициаторов в ней раздельно изложены механизм и кинетика реакций полимеризации ненасыщенных неполярных и полярных мономеров. Анионные процессы образования макромолекул, протекающие за счет раскрытия связей С—гетероатом в циклических мономерах, рассмотрены в гл. IV. [c.44]

    В первых трех главах книги обсуждены наиболее общие особенности понных систем и процессов ионной полимеризации. В частности, дана характеристика активных центров реакций инициирования и роста, приведена классификация элементарных актов и затронута проблема реакционноспособности полярных мономеров. Две последующие главы сосредоточены на механизме и кинетике анионной и катионной полимеризации. В последней главе рассмотрен механизм формирования структуры полимерной цепи. [c.4]

    Полученные результаты нельзя объяснить с точки зрения только ионного механизма, предложенного авторами для радиационной полимеризации, поскольку присутствующий воздух сильно ускоряет процесс кроме того, энергия активации высока и интервал температур, при которых протекает пост-полимеризация (40—62°), отличается от температур для радиационной полимеризации (20—62°). Авторы считают, что пост-полимеризация происходит на активных центрах, возникающих при разлол ении перекиси, однако могут сосуществовать два различных механизма, один из которых указан выще, а другой еще не изучен, но, по мнению авторов, активный центр — это не ион и не радикал. Описанные Окамура кинетические закономерности гвердофазной радиационной пост-полимеризации относятся к поздним ста-дия.м процесса, когда полимеризация прошла уже до больших глубин превращения, Начальные стадии пост-полимеризации триоксана изучали Ениколопян и Гольданский с сотрудниками [Трофимова Г. М,, Баркалов И, М., Кузьмина С, С,, Гольданский В, И,, Е н и к о л о-п я н Н, С,, Высокомолек, соед., 7 (в печати)]. Облучение проводилось на воздухе при 22 и —196°, пост-полимеризация—в интервале температур 30— 64°, причем специальными опытами показано, что во время облучения полимеризации не происходит. Оказалось, что пост-полимеризация триоксана — двустадийный процссс. Первая стадия в зависимости от фазы предварительного облучения может иметь скорость выше 100%/час, На втором участке полимеризация замедляется и идет с постоянной скоростью 5— 30%/чйс, Экстраполяция кинетической кривой на втором участке к нулевому моменту времени пост-полимеризации дает на оси ординат отрезок — скачок , который является характеристикой первой стадии процесса. Особенно ярко такой характер процесса проявляется на монокристалле триоксана при температуре пост-полимеризации 55°. При понижении температуры кривые приобретают 8-образную форму, появляется индукционный период, увеличивающийся с понижением температуры и ростом дозы предварительного облучения. Величина скачка ири разных температурах постоянна при постоянной дозе облучения. С увеличением дозы предварительного облучения растет и величина скачка , и скорость на втором прямолинейном участке кинетической кривой (соог). Изменение интенсивности предварительного облучения не оказывает никакого влияния на величину скачка и шо2. Самые большие скорости шог наблюдаются при 55°, В интервале температур 30—50° энергия активации Шо2 равна 34 ккал/моль. При понижении температуры облучения уменьшается как скачок , так и гиог- Общий характер закономерностей не меняется при переходе от монокристалла к поликристаллу. Особенности кинетики радиационной пост-полнмеризации триоксана также могут быть объяснены с точки зрения возможности про текаИия анизотропной полимеризации в твердой фазе. Процесс пост-поли- [c.371]



Смотреть главы в:

Теория радикальной полимеризации -> Общая характеристика кинетики полимеризации

Теория радикальной полимеризации -> Общая характеристика кинетики полимеризации

Теория радикальной полимеризации -> Общая характеристика кинетики полимеризации




ПОИСК







© 2025 chem21.info Реклама на сайте