Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ОСНОВНЫЕ ПРОЦЕССЫ ПОЛУЧЕНИЯ ПРОИЗВОДНЫХ УГЛЕВОДОРОДОВ Окисление углеводородов

    Окисление углеводородов является одним из основных направлений современного нефтехимического синтеза [1, 2], роль которого в развитии органической химии трудно переоценить. В настоящее время в промышленности осуществляется каталитическое жидкофазное окисление высших парафиновых углеводородов в высшие алифатические спирты и кислоты [3]. В последние годы большой интерес проявляют исследователи к жидкофазному автоокислению углеводородов кислородом воздуха в гидроперекиси При этом особое внимание привлекает автоокисление алкилароматических углеводородов и некоторых их производных в гидроперекиси. Это объясняется легкостью синтеза алкилароматических углеводородов на основе реакции алкилирования, как показано в главе И, легкостью окисления многих из них в гидроперекиси и широким применением последних в качестве инициаторов процессов полимеризации и исходного сырья в производстве мономеров для получения синтетических каучуков, пластических масс, синтетических волокон и других продуктов, важных для народного хозяйства. [c.244]


    Окисление — наиболее распространенный метод получения различных кислородсодержащих соединений из углеводородного сырья и некоторых функциональных производных углеводородов различных классов. Практическое значение процессов окисления в промышленности основного органического и нефтехимического синтеза трудно переоценить. Это обусловлено, в первую очередь, многообразием реакций окисления, что позволяет использовать их для первичной переработки углеводородного сырья и производить на их основе различные ценные соединения (спирты, моно- и дикарбоновые кислоты и их ангидриды, а-оксиды, нитрилы и др.), являющиеся растворителями, промежуточными продуктами органического синтеза, мономерами и исходными веществами в производстве полимерных материалов, поверхностно-активных веществ, пластификаторов и т. д. Во-вторых, доступностью и низкой стоимостью большинства окислителей, среди которых главное место занимает кислород воздуха. Это определяет более высокую экономичность синтеза ряда продуктов методами окисления по сравнению с другими способами их производства. В ряде процессов в качестве агентов окисления можно использовать гипохлориты, хлораты, перманганаты, азотную кислоту и оксид азота(IV), сульфат ртути, оксиды и пероксиды некоторых металлов, пероксид водорода. [c.140]

    Прямое окисление непредельных углеводородов (в основном Сг—С4) получило распространение в промышленности сравнительно недавно. Но уже в настояшее время процессы прямого окисления олефинов осуществляются в крупных промышленных масштабах для получения окисей олефинов, альдегидов, кетонов, карбоновых кислот и их производных (ангидридов и нитрилов). По сравнению с окислением парафиновых углеводородов, приводящим к смеси разнообразных кислородсодержащих соединений, окисление непредельных углеводородов Сг—С4 является более селективным процессом, идущим с преимущественным образованием одного целевого продукта. Так, окислением этилена на серебряном катализаторе получается окись этилена, при окислении этилена в присутствии хлористого палладия — ацетальдегид, а если этот процесс идет в растворе уксусной кислоты, получается винилацетат. Процессы прямого окисления непредельных углеводородов вытесняют такие традиционные и хорошо освоенные процессы, как синтез окиси этилена через этиленхлоргидрин, синтез ацетальдегида из ацетилена, синтез акрилонитрила из этиленциангидрина и др. [c.268]


    Прямое окисление непредельных углеводородов (в основном Сг — С4) получило распространение в промышленности сравнительно недавно. Но уже в настоящее время процессы прямого окисления олефинов осуществляются в крупных промышленных масштабах для получения оксидов олефинов, альдегидов, кетонов, карбоновых кислот и их производных (ангидридов и нитрилов). По сравнению с окислением парафиновых углеводородов, приводящим к смеси разнообразных кислородсодержащих соединений, [c.192]

    Прямое окисление ненасыщенных углеводородов (в основном Сг—С4) получило распространение в промышленности сравнительно недавно. В настоящее время процессы прямого окисления низших ненасыщенных углеводородов осуществляют в промышленных масштабах для получения оксидов олефинов, альдегидов, кетонов, карбоновых кислот и их производных. [c.140]

    Систематические исследования по выяснению влияния хими ческой природы нефтяного сырья и условий окисления на состав-и свойства окисленных битумов [42—49] показали, что глубина отбора дистиллятных фракций заметно сказывается как на составе гудрона, так и на характере изменения и глубине термоокислительного превращения последнего. Детальное исследование элементного и компонентного составов тяжелых нефтяных остатков, полученных различными вариантами термической обработки, позволило выяснить характер влияния на направление и глубину превращения их в процессе производства. Полученные экспериментальные данные дали возможность составить общее представление об основных направлениях химических изменений составляющих битум компонентов в процессе его производства в заводских условиях. Чем более жесткой высокотемпературной обработке подвергаются тяжелые нефтяные остатки, тем большую роль в стадии окисления играет углеводородная часть битума. Это видно из данных, характеризующих количественное и качественное изменения в составе углеводородов. При переходе от гудрона к окисленному битуму (БН-У) содержание углеводородов снижается с 65—70 до 40—46%. При этом в окисленном битуме практически отсутствуют парафино-циклопарафиновые углеводороды, а среди ароматических углеводородов преобладают структуры, содержащие в молекуле ди- и нодиконденсированные ароматические ядра. Жидкие продукты окисления ( отдув ) битума на первой стадии окисления (до БН-1П) состоят из низкомолекулярных кислородных производных углеводородов преимущественно алифатической природы. [c.133]

    Основные научные работы посвящены органическому синтезу. Провел (1930) исследования полифе-нилированных производных дито-лила. Изучал (с 1939) жидкофазное каталитическое окисление ароматических углеводородов. Совместно с Р. Ю. Удрисом, Б. Д. Кружаловым и М. С. Немцовым разработал (1949) технологический процесс получения ацетона и фенола из бензола и пропилена через кумол (кумольный метод), нашедший применение в промышленности. [40] [c.459]

    Органические красители. Сырьем для производства органических красителей обычно является каменноугольная смола. В большинстве случаев циклические углеводороды, полученные из смолы или же синтетическим путем (бензол, толуол, антрацен и их производные), являются основными веществами для производства очень многочисленных красителей. Технологические процессы могут включать сульфирование (серной кислотой), нитрование (серной и азотной кислотами), восстановление нитросоединений в аминосоединения (железной стружкой и кислотой, цинком, сернистым аммонием, сернистым натрием, сернистой кислотой и т. д.), диазотирование (солями азотистой кислоты и свободными кислотами), конденсацию (хлористым алюминием), окисление (хлором, азотной кислотой и т. д.), плавление (с едкилш щелочами), высаливание (хлористым натрием и т. д.), подщелачивание (едкими щелочами, едкой известью) и т. п. Образующиеся при этом сточные воды содержат в растворимом и нерастворимом виде различнейшие органические и неорганические соединения. Особенно часто встречаются следующие составные частг сстатки исхедных и промежуточных органич(Ских продуктов (бензол, анилин, циклические нитросоединения и т. д.), остатки готовых продуктов (красители), метиловый спирт, серная кислота и ее соли, глицерин, азотная кислота и ее соли, соли азотистой кислоты, хлористый натрий, известь, железные соли, хлористый алюминий, уксусная кислота и ее соли, а также вторичные продукты реакции этих веществ. [c.213]


Смотреть главы в:

Основы технологии нефтехимического синтеза -> ОСНОВНЫЕ ПРОЦЕССЫ ПОЛУЧЕНИЯ ПРОИЗВОДНЫХ УГЛЕВОДОРОДОВ Окисление углеводородов




ПОИСК





Смотрите так же термины и статьи:

окисление получение



© 2025 chem21.info Реклама на сайте